期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Intelligent Control Method for the Secondary Cooling of Continuous Casting
1
作者 SUN Shaoyuan LI Shiping WANG Junran (Information Engineering Shool, UST B, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期46-46,共1页
An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The res... An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The results show that the intelligent control system can not only control the surface temperature of the bloom of the secondary cooling but also has a good ability of self-adaptation and self-learning. 展开更多
关键词 continuous casting artificial neural networks fuzzy control
下载PDF
Microstructure quantification of Cu-4.7Sn alloys prepared by two-phase zone continuous casting and a BP artificial neural network model for microstructure prediction 被引量:2
2
作者 Ji-Hui Luo Xue-Feng Liu +1 位作者 Zhang-Zhi Shi Yi-Fei Liu 《Rare Metals》 SCIE EI CAS CSCD 2019年第12期1124-1130,共7页
Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at l... Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC. 展开更多
关键词 Two-phase zone continuous casting Cu-Sn alloy Grains-covered grains Microstructure quantification Back propagation artificial neural network
原文传递
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
3
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
4
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss PI controller fuzzy logic controller artificial neural network controller
下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
5
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 artificial neural Network Energy Management fuzzy control Hybrid POWER Systems MAXIMUM POWER Point TRACKER Modeling
下载PDF
Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives
6
作者 K. Naga Sujatha K. Vaisakh 《Journal of Intelligent Learning Systems and Applications》 2010年第2期110-118,共9页
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot... A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 ANFIS controlLER PI controlLER fuzzy LOGIC controlLER artificial neural Network controlLER INDUCTION MOTOR Drive
下载PDF
Intelligence Based Soft Starting Scheme for the Three Phase Squirrel Cage Induction Motor with Extinction Angle AC Voltage Controller
7
作者 A. A. Mohamed Faizal P. Subburaj 《Circuits and Systems》 2016年第9期2752-2770,共19页
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim... Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising. 展开更多
关键词 SEMICONDUCTOR artificial neural Network fuzzy Logic control Three Phase Squirrel Cage Induction Motor
下载PDF
Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles 被引量:2
8
作者 XIA XiuZe CHENG Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2272-2280,共9页
Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displa... Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references. 展开更多
关键词 pneumatic artificial muscles adaptive T-S fuzzy model LSTM neural network model model predictive control
原文传递
基于模式识别和人工神经网络建立的板坯连铸二冷水模型 被引量:13
9
作者 徐荣军 陈念贻 +2 位作者 刘洪霖 张永鑫 马智明 《钢铁》 CAS CSCD 北大核心 2001年第2期26-28,55,共4页
介绍了一种铸坯表面测温的方法 ,并依据铸坯表面温度 ,应用模式识别与人工神经网络相结合的方法 ,建立了板坯连铸的二冷水模型。该模型既可根据模式识别的分类图预报优化的二冷工艺参数 ,亦可根据钢种、中间包钢水温度、拉速及希望的二... 介绍了一种铸坯表面测温的方法 ,并依据铸坯表面温度 ,应用模式识别与人工神经网络相结合的方法 ,建立了板坯连铸的二冷水模型。该模型既可根据模式识别的分类图预报优化的二冷工艺参数 ,亦可根据钢种、中间包钢水温度、拉速及希望的二冷区不同部位的铸坯表面温度由 PL S改善了的输入神经元网络 ,预报连铸不同回路的水量。该模型运用于生产实际后 ,铸坯表面裂纹大为减少 ,取得了较好的效果。 展开更多
关键词 模式识别 人工神经网络 板坯连铸 二冷水模
下载PDF
连铸二冷控制的智能化方法 被引量:11
10
作者 孙韶元 李世平 +1 位作者 王俊然 王克襄 《北京科技大学学报》 EI CAS CSCD 北大核心 1997年第2期188-191,共4页
提出了板坯连铸二冷区全智能控制系统的构想,并用人工神经网络和模糊控制的方法对该系统进行了计算机仿真.结果表明,该系统不但能完成二冷各区段铸坯表面温度的动态控制,而且具有良好的自适应性和自学习功能.
关键词 神经网络 连续铸造 二冷控制 智能控制系统
下载PDF
基于模糊神经网络的永磁同步电动机矢量控制系统 被引量:60
11
作者 曹先庆 朱建光 唐任远 《中国电机工程学报》 EI CSCD 北大核心 2006年第1期137-141,共5页
该文提供了一种基于自适应模糊神经网络的永磁同步电动机(PMSM)矢量控制系统速度控制器的实施方案。模糊神经网络控制器(FNNC)包括神经网络控制器(NC)和模糊逻辑控制器(FC)两部分,它同时具有神经网络自学习能力和模糊逻辑在处理不确定... 该文提供了一种基于自适应模糊神经网络的永磁同步电动机(PMSM)矢量控制系统速度控制器的实施方案。模糊神经网络控制器(FNNC)包括神经网络控制器(NC)和模糊逻辑控制器(FC)两部分,它同时具有神经网络自学习能力和模糊逻辑在处理不确定信息方面的能力。人工神经网络(ANN)的初始权值和阈值通过离线训练的方式获得。在实际的运行过程中,利用模糊控制器的输出对神经网络的权值和阈值进行实时调整。仿真结果表明利用所提出的模糊神经网络来建立永磁同步电动机矢量控制系统的速度控制器,当电机参数改变或者受到外部扰动时,系统具有良好的动态特性。 展开更多
关键词 自适应模糊神经网络控制器 永磁同步电动机 神经网络控制器 模椒控制器 人工神经网络
下载PDF
智能结构控制发展综述 被引量:48
12
作者 李宏男 阎石 林皋 《地震工程与工程振动》 CSCD 北大核心 1999年第2期29-36,共8页
本文介绍了智能结构的基本概念和基本特点,并对智能结构控制理论的形成和发展进行了综合论述;重点阐述了在土木工程结构控制中应用较成功的人工神经网络和模糊逻辑的理论和应用的现状,提出了今后应重点解决的问题。
关键词 智能结构控制 土木工程 人工神经网络 模糊逻辑 综述
下载PDF
用于建模、优化、故障诊断的数据挖掘技术 被引量:15
13
作者 杨杰 叶晨洲 +1 位作者 黄欣 陈念贻 《计算机集成制造系统-CIMS》 EI CSCD 2000年第5期72-76,81,共6页
建模、优化、故障诊断是流程工业CIMS技术中的关键技术。传统的建模、优化、故障诊断方法依赖于数学模型仿真或专家经验规则 ,对于强非线性和非高斯分布噪声的对象存在着知识获取瓶颈。而数据挖掘技术综合运用机器学习、计算智能 (人工... 建模、优化、故障诊断是流程工业CIMS技术中的关键技术。传统的建模、优化、故障诊断方法依赖于数学模型仿真或专家经验规则 ,对于强非线性和非高斯分布噪声的对象存在着知识获取瓶颈。而数据挖掘技术综合运用机器学习、计算智能 (人工神经网、遗传算法 )、模式识别、数理统计等技术 ,从大量数据中挖掘和发现有价值和隐含的知识。本文进一步研究了建模、优化、故障诊断的数据挖掘系统 ,以及规则挖掘、参变量优化、故障诊断建模的算法。 展开更多
关键词 数据挖掘 故障诊断 CIMS 建模 优化
下载PDF
深大基坑施工变形的智能控制技术 被引量:20
14
作者 袁金荣 王文明 孙钧 《岩土工程学报》 EI CAS CSCD 北大核心 2002年第4期460-464,共5页
利用神经网络 (ANN)和模糊控制 (FC)理论 ,采用预测控制的思想 ,建立了一套集基坑施工变形预测和控制于一体的智能化施工控制系统 ,该系统由神经网络预测器和模糊控制器组成。神经网络预测器对基坑变形进行连续滚动的多步预测 ,模糊控... 利用神经网络 (ANN)和模糊控制 (FC)理论 ,采用预测控制的思想 ,建立了一套集基坑施工变形预测和控制于一体的智能化施工控制系统 ,该系统由神经网络预测器和模糊控制器组成。神经网络预测器对基坑变形进行连续滚动的多步预测 ,模糊控制器根据预测结果对施工参数进行决策控制。在MATLAB 5 .2平台支持下 ,研制了相应的基坑变形控制软件系统。实际应用结果表明 ,该智能控制系统对深基坑的安全施工过程具有较好的控制效果 ,真正做到了施工过程的实时、动态、智能化控制。软件系统操作界面简单、直观 ,便于实际工程应用。 展开更多
关键词 深基坑 模糊控制 神经网络 智能控制 MATLAB 软件系统
下载PDF
智能控制方法应用于APF的综述与展望 被引量:24
15
作者 王晓刚 谢运祥 帅定新 《电网技术》 EI CSCD 北大核心 2008年第8期35-41,共7页
随着计算机技术和芯片技术的发展,智能控制方法将逐步进入实用化阶段。将智能控制方法用于控制有源电力滤波器(activepowerfilter,APF)可大大提高APF的各项性能。文章对模糊控制、人工神经网络、遗传算法等智能控制方法及其与其它方法... 随着计算机技术和芯片技术的发展,智能控制方法将逐步进入实用化阶段。将智能控制方法用于控制有源电力滤波器(activepowerfilter,APF)可大大提高APF的各项性能。文章对模糊控制、人工神经网络、遗传算法等智能控制方法及其与其它方法结合构成的复合控制方法在APF中的应用现状进行了综述,比较和总结了上述控制方法的优缺点及存在的问题,并对智能控制方法应用于APF的发展方向进行了展望,指出将智能控制方法和非线性控制方法相结合,实现对APF的控制会是一个较有前途的发展方向。 展开更多
关键词 有源电力滤波器 智能控制 模糊控制 人工神经网络 遗传算法 复合控制
下载PDF
模糊神经网络在磨机负荷控制中的应用 被引量:9
16
作者 张杰 王建民 +2 位作者 杨志刚 沈小伟 李艳姣 《仪表技术与传感器》 CSCD 北大核心 2014年第5期66-68,79,共4页
磨矿分级作业是选矿生产中的关键环节,其中的磨机负荷控制由于存在大惯性滞后、参数耦合性强和时变性等问题,所以难以建立精确的数学模型,因此常规PID控制很难达到预期的控制效果。针对上述情况,将模糊控制与人工神经网络控制相结合,既... 磨矿分级作业是选矿生产中的关键环节,其中的磨机负荷控制由于存在大惯性滞后、参数耦合性强和时变性等问题,所以难以建立精确的数学模型,因此常规PID控制很难达到预期的控制效果。针对上述情况,将模糊控制与人工神经网络控制相结合,既发挥了模糊控制鲁棒性强的优点,又可以通过数值运算的形式实现对结构性语言经验的综合推理,正向并联辨识的加入,极大地增加了磨机运行的稳定性。通过对现场运行情况的监控,表明该控制方法可以有效地消除运行过程中外部干扰带来的扰动。 展开更多
关键词 磨机负荷 模糊控制 人工神经网络 正向并联辨识
下载PDF
气动人工肌肉的模糊小波神经网络控制 被引量:7
17
作者 昝鹏 颜国正 +1 位作者 黄标 于莲芝 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第23期5566-5569,共4页
针对一种应用于医疗机器人领域的三自由度人工肌肉的非线性特性,结合模糊理论与小波神经网络,提出一种模糊小波神经网络控制器对人工肌肉驱动器进行控制。利用模糊小波神经网络的学习能力,采用梯度法搜寻控制器的最优参数。将采用模糊... 针对一种应用于医疗机器人领域的三自由度人工肌肉的非线性特性,结合模糊理论与小波神经网络,提出一种模糊小波神经网络控制器对人工肌肉驱动器进行控制。利用模糊小波神经网络的学习能力,采用梯度法搜寻控制器的最优参数。将采用模糊小波神经网络控制器与采用小波神经网络控制器及模糊神经网络控制器的控制系统仿真结果进行比较。仿真结果说明模糊小波神经网络控制器有效地改善了驱动器的静动态特性,具有更快的训练速度和更好的控制效果,是一种理想的气动人工肌肉控制方法。 展开更多
关键词 模糊 小波神经网络 人工肌肉 控制
下载PDF
电梯群控技术的现状与发展方向 被引量:70
18
作者 杨祯山 邵诚 《控制与决策》 EI CSCD 北大核心 2005年第12期1321-1331,共11页
在对电梯群控系统的结构特性、工作原理以及该技术最新发展概况综述的基础上,对电梯群控系统研究中的控制算法以及控制策略的采用、实施的效果、关键技术和存在的问题等进行了详细分析.结合电梯群控系统的应用现状,探讨了现阶段电梯群... 在对电梯群控系统的结构特性、工作原理以及该技术最新发展概况综述的基础上,对电梯群控系统研究中的控制算法以及控制策略的采用、实施的效果、关键技术和存在的问题等进行了详细分析.结合电梯群控系统的应用现状,探讨了现阶段电梯群控技术应着重解决的问题和发展方向. 展开更多
关键词 电梯群控技术 人工智能 模糊控制 神经网络 遗传算法
下载PDF
基于模糊神经网络的一种漏钢预报方法 被引量:6
19
作者 郭戈 乔俊飞 +1 位作者 王伟 柴天佑 《控制理论与应用》 EI CAS CSCD 北大核心 1998年第4期593-598,共6页
现有拉漏预报方法经常会发生误报,本文尝试了一种基于神经网络的漏钢预报方法,它采用神经网络进行模糊模式识别和预测拉漏事故.实验表明该方法能比原有方法更快速准确地检测出铸坯粘结和裂缝等缺陷,可有效预防连铸中的漏钢事故.
关键词 漏钢预报 模糊神经网络 连续铸钢
下载PDF
连铸坯质量判定模糊专家系统 被引量:10
20
作者 王悦新 邱以清 刘相华 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第7期989-992,共4页
鉴于连铸过程中存在众多不确定性,考虑某中厚板厂的实际生产状况与中厚板热送热装的控制要求,以表面纵裂为例,按照模糊专家系统的开发思路,建立起连铸坯纵裂知识库,开发推理机制.采用纵裂指数预测和神经网络预测相结合的方法对连铸坯质... 鉴于连铸过程中存在众多不确定性,考虑某中厚板厂的实际生产状况与中厚板热送热装的控制要求,以表面纵裂为例,按照模糊专家系统的开发思路,建立起连铸坯纵裂知识库,开发推理机制.采用纵裂指数预测和神经网络预测相结合的方法对连铸坯质量进行离线判断、推理和决策,并给出相应的缺陷产生原因解释.采用VC++6.0软件建立人机界面,数据库采用Oracle,调试结果表明该系统可以达到较高的判定准确率(92.8%),为在线应用奠定了基础. 展开更多
关键词 连铸坯质量 模糊专家系统 纵裂 知识库 神经网络 人机界面
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部