An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The res...An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The results show that the intelligent control system can not only control the surface temperature of the bloom of the secondary cooling but also has a good ability of self-adaptation and self-learning.展开更多
Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at l...Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform...Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.展开更多
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto...This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.展开更多
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot...A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.展开更多
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim...Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.展开更多
Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displa...Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references.展开更多
文摘An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The results show that the intelligent control system can not only control the surface temperature of the bloom of the secondary cooling but also has a good ability of self-adaptation and self-learning.
基金financially supported by the National Key Research and Development Plan of China (No.2016YFB0301300)the National Natural Science Foundation of China (Nos.51374025,51674027 and U1703131)the Beijing Municipal Natural Science Foundation (No.2152020)
文摘Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
文摘Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.
文摘This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.
文摘A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.
文摘Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61873268,62025307 and U1913209)the Beijing Natural Science Foundation(Grant No.JQ19020).
文摘Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references.