The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composi...The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.展开更多
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t...A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.展开更多
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont...Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
Three kinds of polymers, polymethyl acrylate emulsion (POLYVINYLformal solution (PV- FO), styrene acrylate copolymer emulsion (SA)are chosen To study the effect of polymer in steel fiber rein forcedce- Ment composites...Three kinds of polymers, polymethyl acrylate emulsion (POLYVINYLformal solution (PV- FO), styrene acrylate copolymer emulsion (SA)are chosen To study the effect of polymer in steel fiber rein forcedce- Ment composites (SFRCC). The experimental results show That thebonding properties in SFRCC are remarkably im- Proved after theaddition of three kinds of polymer.展开更多
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve...Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.展开更多
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime...A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.展开更多
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s...Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models.展开更多
Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to t...Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties,low cost,environment friendliness and biodegradability.Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer.Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure.The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications,identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading.The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading.In addition,the application of multi attributes decision making(MADM)tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.展开更多
The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to pr...The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re...The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.展开更多
During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees o...During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees of property damage and casualties to the construction of the tunnel,seriously affecting harmony during construction.The domestic emergency hedging is mainly the use of 8-10mm steel coils,but the steel is heavy and not suitable for the frequent movement of tunnels.This paper introduces the new Glass Fiber Reinforced Polymer Composite(GFRPC)escape pipeline used in Chongqing Jiuyongyi Jinyunshan Tunnel,and compares the traditional steel coil parameters to provide reference for subsequent tunnel hedging measures.展开更多
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th...This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites.展开更多
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d...Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.展开更多
Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysila...Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.展开更多
Composite fiber materials are superior materials due to their high strength and light weight. Composites reflect the properties of their constituents, which is proportional to the volume fraction of each phase. There ...Composite fiber materials are superior materials due to their high strength and light weight. Composites reflect the properties of their constituents, which is proportional to the volume fraction of each phase. There are different fiber reinforcement types and each affects its flexural, tensile and compression strength. When selecting a composite for a specific application, the forces excreted on the composite must be known in order to determine the reinforcement type. Unidirectional fiber reinforcement will allow very strong load resistance but only in one direction where as a random orientated fiber reinforcement can resist less load but can maintain this quota in all directions. These materials are said to be anisotropic. Certain composite fibers, taking into consideration their weights, are physically stronger than conventional metals. In this paper, specific light-weight components with different reinforcement types, volume fraction and phase content were newly composed, tested, characterized and evaluated. By applying a novel method, a model which including the various matrix compositions, reinforcement types of each specific component, and its dual-properties was developed according to the structure characteristics. It was shown that certain reinforced composites such as carbon fiber, tend to be much stronger than metals when taking account its weight ratio. The outcome of this research lays a good foundation for the further carbon fiber-based material design work.展开更多
Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revea...Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revealed in the quasi-static crush test that its energy absorption capability was controlled significantly from 8 to 178 kJ/kg by changing the curvature of the plug. The range of energy absorption covers almost all types of CFRP tube reported in the literature. A dynamic crush test up to 55 km/h was then performed by drop weight impact tests. The energy absorption capability of the CFRP tube in the dynamic crush test was very similar to that in the quasi-static crush test. A simple design concept of energy absorption for a CFRP tube, using the double-sided plug, was proposed.展开更多
Recently, attention has been drawn to the use of bio-reinforced composites in automotive, construction, packaging and medical applications due to increased concern for environmental sustainability. Green polymer nanoc...Recently, attention has been drawn to the use of bio-reinforced composites in automotive, construction, packaging and medical applications due to increased concern for environmental sustainability. Green polymer nanocomposites show unique properties of combining the advantages of natural fillers and organic polymers. Plant fibers are found suitable to reinforce polymers. They have relatively high strength and stiffness, low cost of acquisition, low density and produce low CO2 emission. They are also biodegradable and are annually renewable compared to other fibrous materials. Organic polymers on the other hand, are desirable because they are either recyclable or biodegradable without causing environmental hazards. This paper reviews current research efforts, techniques of production, trends, challenges and prospects in the field of green nanocomposites.展开更多
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv...Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.展开更多
文摘The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.
基金Supported by National Key R&D Program of China(Grant Nos.2017YFB1103400,2016YFB1100902)National Natural Science Foundation of China(Grant No.51575430,51811530107)The Youth Innovation Team of Shaanxi Universities.
文摘A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.
基金Funded by the National Natural Science Foundation of China(No.50878169)the Project of State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G201407)
文摘Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions
文摘Three kinds of polymers, polymethyl acrylate emulsion (POLYVINYLformal solution (PV- FO), styrene acrylate copolymer emulsion (SA)are chosen To study the effect of polymer in steel fiber rein forcedce- Ment composites (SFRCC). The experimental results show That thebonding properties in SFRCC are remarkably im- Proved after theaddition of three kinds of polymer.
文摘Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.
文摘A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.
文摘Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models.
文摘Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties,low cost,environment friendliness and biodegradability.Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer.Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure.The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications,identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading.The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading.In addition,the application of multi attributes decision making(MADM)tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.
文摘The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
文摘The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.
文摘During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees of property damage and casualties to the construction of the tunnel,seriously affecting harmony during construction.The domestic emergency hedging is mainly the use of 8-10mm steel coils,but the steel is heavy and not suitable for the frequent movement of tunnels.This paper introduces the new Glass Fiber Reinforced Polymer Composite(GFRPC)escape pipeline used in Chongqing Jiuyongyi Jinyunshan Tunnel,and compares the traditional steel coil parameters to provide reference for subsequent tunnel hedging measures.
文摘This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites.
基金Supported by Research Innovation Fund Project “Research on micro machining mechanism of fiber reinforced composites”(Grant No.HIT.NSRIF.2014055)of Harbin Institute of Technology,China
文摘Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.
基金Supported by National Natural Science Foundation of China (No.50872101,A3 Foresight Program-50821140308)National Basic Research Program of China (No.2009CB939704)a joint project of National Nature Science Foundation of China and Russian Foundation for Basic Research(No.NSFC-RFBR 51011120252)
文摘Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.
文摘Composite fiber materials are superior materials due to their high strength and light weight. Composites reflect the properties of their constituents, which is proportional to the volume fraction of each phase. There are different fiber reinforcement types and each affects its flexural, tensile and compression strength. When selecting a composite for a specific application, the forces excreted on the composite must be known in order to determine the reinforcement type. Unidirectional fiber reinforcement will allow very strong load resistance but only in one direction where as a random orientated fiber reinforcement can resist less load but can maintain this quota in all directions. These materials are said to be anisotropic. Certain composite fibers, taking into consideration their weights, are physically stronger than conventional metals. In this paper, specific light-weight components with different reinforcement types, volume fraction and phase content were newly composed, tested, characterized and evaluated. By applying a novel method, a model which including the various matrix compositions, reinforcement types of each specific component, and its dual-properties was developed according to the structure characteristics. It was shown that certain reinforced composites such as carbon fiber, tend to be much stronger than metals when taking account its weight ratio. The outcome of this research lays a good foundation for the further carbon fiber-based material design work.
文摘Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revealed in the quasi-static crush test that its energy absorption capability was controlled significantly from 8 to 178 kJ/kg by changing the curvature of the plug. The range of energy absorption covers almost all types of CFRP tube reported in the literature. A dynamic crush test up to 55 km/h was then performed by drop weight impact tests. The energy absorption capability of the CFRP tube in the dynamic crush test was very similar to that in the quasi-static crush test. A simple design concept of energy absorption for a CFRP tube, using the double-sided plug, was proposed.
文摘Recently, attention has been drawn to the use of bio-reinforced composites in automotive, construction, packaging and medical applications due to increased concern for environmental sustainability. Green polymer nanocomposites show unique properties of combining the advantages of natural fillers and organic polymers. Plant fibers are found suitable to reinforce polymers. They have relatively high strength and stiffness, low cost of acquisition, low density and produce low CO2 emission. They are also biodegradable and are annually renewable compared to other fibrous materials. Organic polymers on the other hand, are desirable because they are either recyclable or biodegradable without causing environmental hazards. This paper reviews current research efforts, techniques of production, trends, challenges and prospects in the field of green nanocomposites.
文摘Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.