期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Drought and Flood Analysis and Impact on Food Production in Fushun 被引量:3
1
作者 李金义 银燕 +1 位作者 张影 迟贵富 《Meteorological and Environmental Research》 CAS 2010年第6期33-35,38,共4页
Based on monthly precipitation data during 1961-2008 in 50 stations in Fushun,drought and flood indicators of three counties were calculated with Z index method. The geographical and seasonal distribution characterist... Based on monthly precipitation data during 1961-2008 in 50 stations in Fushun,drought and flood indicators of three counties were calculated with Z index method. The geographical and seasonal distribution characteristics of Fushun were analyzed,and so was the impact of droughts and floods on food production. It shows that,since 1961,there are 7 poor harvest years in Fushun,with quadrennial caused by continuous seasonal floods or droughts,two years by year drought,one year by summer flood. 展开更多
关键词 Drought and flood indicators Food production Z index Droughts or floods in continuous seasons China
下载PDF
Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking
2
作者 Hira Akhtar Butt Khoula Said Al Harthy +3 位作者 Mumtaz Ali Shah Mudassar Hussain Rashid Amin Mujeeb Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2024年第11期3003-3031,共29页
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern networks.Traditional detection systems often struggle to mitigate such atta... Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern networks.Traditional detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)environments.While Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent retraining.In this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN environments.Our model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant features.This adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack scenarios.Our proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble techniques.The proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in SDNs.It provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving threats.Our comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing SDNs.Experimental results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost. 展开更多
关键词 Table 1(continued)OSI layer Possible DDoS attack Data link MAC Address flooding Physical Cable disconnection JaMMING physical impersonation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部