Atmospheric humidity is a sustainable low-value energy widely existing in natural environment,which is a promising candidate to solve the noncontinuous and low efficiency of low-value energy power generation.Here the ...Atmospheric humidity is a sustainable low-value energy widely existing in natural environment,which is a promising candidate to solve the noncontinuous and low efficiency of low-value energy power generation.Here the mono-substituted Dawson-type polyoxometalates are constructed to be highly dispersed organic ammonium-polyoxoanion clusters and are assembled into thin films power generators with micropores,working in atmospheric humidity.The optimal polyoxometalates generator with the thickness of 7.2μm and the area of 0.36 cm^(2) produces a voltage of 0.68 V and a current density of 19.5μA·cm^(-2) under simulated natural environment,and works continuously and stably under almost all-natural environments(humidity 10%–90%).The highly dispersed polyoxometalate nanoclusters can form microporous in polyoxometalate films to effectively absorb atmospheric humidity and spontaneously form distribution gradient of water,which is the structural basis of power generation.The continuous power generation may be maintained by the effective adsorption and utilization of H_(2)O,the huge electrostatic field of organic ammonium-polyoxoanion clusters,and the reasonably designed polyoxometalates containing inorganic small ions with high mobility.It is the first humidity generator designed with polyoxometalates,which may provide a new research direction for polyoxometalates in sustainable utilization of low-value energy.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems ...In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems was analyzed. Considering the structural symmetry and according to the different connection arrangement of the four ports, compound split system was classified into four types. Using black-box modeling method, the generalized models of the speed ratio, the torque ratio and the power split ratio were established. Moreover, a semi-invert diagram was used to distin- guish the different schemes in each type. The characteristics of the speed ratio, the torque ratio and the power split ratio in each domain were also analyzed and compared. Through the semi-invert dia- gram, a selection method based on the rated-power speed ranges in different schemes was presented and all suitable compound split systems were identified, which can be used as references for the scheme selection of this kind of continuously variable power split transmission.展开更多
The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectr...The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).展开更多
Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide coope...Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide cooperative support to each other to reduce capacity and improve system reliability.A fast power control method for substations is needed due to rapid load changes and low overload capability of the system.This paper proposes a fast power control method based on high-speed communication between substations,with additional transient power control to significantly improve the dynamic response of the system.展开更多
This study aims to explore a method suitable for welding 7A52 high-strength aluminum alloy plates with continuously varying thicknesses and the causes of microscopic defects in welds in order to improve welding qualit...This study aims to explore a method suitable for welding 7A52 high-strength aluminum alloy plates with continuously varying thicknesses and the causes of microscopic defects in welds in order to improve welding quality.Comparative tests were conducted to analyze weld defects and deformation when welding the aluminum alloy plates with varying thicknesses at constant laser power.The laser power required for melting welds at varying-thickness positions was estimated.Weld defects and deformation when welding aluminum alloy plates with varying thicknesses at con-tinuous variable laser power were detected.The causes of microscopic weld defects during constant-power welding were analyzed.The welding defects and deformation and the welding quality were improved by welding aluminum alloy plates at continuous variable power.展开更多
Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of supe...Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.展开更多
As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are n...As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.展开更多
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined...When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22271042 and 21871041)the Science and Technology Research Project of the Education Department of Jilin Province(No.JJKH20211286KJ)the Natural Science Foundation of Jilin Province(No.20180101298JC).
文摘Atmospheric humidity is a sustainable low-value energy widely existing in natural environment,which is a promising candidate to solve the noncontinuous and low efficiency of low-value energy power generation.Here the mono-substituted Dawson-type polyoxometalates are constructed to be highly dispersed organic ammonium-polyoxoanion clusters and are assembled into thin films power generators with micropores,working in atmospheric humidity.The optimal polyoxometalates generator with the thickness of 7.2μm and the area of 0.36 cm^(2) produces a voltage of 0.68 V and a current density of 19.5μA·cm^(-2) under simulated natural environment,and works continuously and stably under almost all-natural environments(humidity 10%–90%).The highly dispersed polyoxometalate nanoclusters can form microporous in polyoxometalate films to effectively absorb atmospheric humidity and spontaneously form distribution gradient of water,which is the structural basis of power generation.The continuous power generation may be maintained by the effective adsorption and utilization of H_(2)O,the huge electrostatic field of organic ammonium-polyoxoanion clusters,and the reasonably designed polyoxometalates containing inorganic small ions with high mobility.It is the first humidity generator designed with polyoxometalates,which may provide a new research direction for polyoxometalates in sustainable utilization of low-value energy.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金Supported by the Ministerial Level Advanced Research Foudation (111044)
文摘In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems was analyzed. Considering the structural symmetry and according to the different connection arrangement of the four ports, compound split system was classified into four types. Using black-box modeling method, the generalized models of the speed ratio, the torque ratio and the power split ratio were established. Moreover, a semi-invert diagram was used to distin- guish the different schemes in each type. The characteristics of the speed ratio, the torque ratio and the power split ratio in each domain were also analyzed and compared. Through the semi-invert dia- gram, a selection method based on the rated-power speed ranges in different schemes was presented and all suitable compound split systems were identified, which can be used as references for the scheme selection of this kind of continuously variable power split transmission.
文摘The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).
基金supported by the National Natural Science Foundation of China under Grant 52277190the Major Science and Technology Projects of China Railway Electrification Engineering Group Co.,LTD.(20192001148).
文摘Continuous co-phase traction power system is an effective method to eliminate neutral sections and provide high quality power for both the public grid and the catenary.The substations have the ability to provide cooperative support to each other to reduce capacity and improve system reliability.A fast power control method for substations is needed due to rapid load changes and low overload capability of the system.This paper proposes a fast power control method based on high-speed communication between substations,with additional transient power control to significantly improve the dynamic response of the system.
基金supported by the Guangxi College Youth Project Foundation(No.2023KY0913)Technology Project of Guizhou Province,Guizhou Science and Technology Cooper-ation Support Project Foundation[2020](No.2Y055)。
文摘This study aims to explore a method suitable for welding 7A52 high-strength aluminum alloy plates with continuously varying thicknesses and the causes of microscopic defects in welds in order to improve welding quality.Comparative tests were conducted to analyze weld defects and deformation when welding the aluminum alloy plates with varying thicknesses at constant laser power.The laser power required for melting welds at varying-thickness positions was estimated.Weld defects and deformation when welding aluminum alloy plates with varying thicknesses at con-tinuous variable laser power were detected.The causes of microscopic weld defects during constant-power welding were analyzed.The welding defects and deformation and the welding quality were improved by welding aluminum alloy plates at continuous variable power.
基金the National Natural Science Foundation of China(No.51467002)Special Projects for Innovation-driven Development(No.2018AA03001Y).
文摘Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.
基金This work is supported by National Natural Science Foundation of China(No.51077042,No.51577049)Special Foundation of The doctoral program of Higher Education(No.20120094110008).
文摘As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.
基金supported in part by the National Key Research and Development Program of China(No.2020YFF0305800)State Grid Science Technology Project(No.520201210025)。
文摘When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.