The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ...The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.展开更多
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro..."Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.展开更多
A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhd...A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhdumi and Sarvak reservoirs of the super-giant Azadegan oilfield, SW Iran. The geochemical data indicate that the oil samples, with medium to high level of thermal maturity, have been generated from the anoxic marine marl/carbonate source rock(s). The Sargelu(Jurassic) and Garau(Cretaceous) formations are introduced as the main source rocks for the studied oils. The dendrogram obtained from the cluster analysis of high-resolution gas chromatography data introduces two main oil groups including Fahliyan reservoir, and Kazhdumi along with Sarvak/Gadvan reservoirs. This is confirmed by C7 Halpern star diagram, indicating that, the light oil fraction from Fahliyan reservoir is distinct from the others. Also, different pressure gradient of the Fahliyan Formation(over-pressured) relative to other reservoirs(normally-pressured) show the presence of compartments. The relation between toluene/n-heptane and n-heptane/methylcyclohexane represents the compartmentalization due to maturation/evaporative fractionation for Fahliyan and water washing for other studied reservoirs. Also, the impermeable upper part of the Fahliyan Formation and thin interbedded shaly layers in the Kazhdumi, Sarvak and Gadvan formations have controlled reservoir compartmentalization.展开更多
The pore structure of continuous unconven-tional reservoirs(CURs)in coal measures was investigated using different technologies for 29 samples(9 coal samples,9 shale samples,and 11 sandstone samples)from Qinshui Basin...The pore structure of continuous unconven-tional reservoirs(CURs)in coal measures was investigated using different technologies for 29 samples(9 coal samples,9 shale samples,and 11 sandstone samples)from Qinshui Basin,China.Results show that coals have relatively high porosities and permeabilities ranging from 4.02%to 5.19%and 0.001 to 0.042 mD,respectively.Micropores(<2 nm)are well-developed in coals and contribute to the majority of pore volume(PV)and specific surface area(SSA).The porosities and permeabilities are between 1.19%-4.11%,and 0.0001-0.004 mD of sand-stones with a predominance of macropores(>50 nm).However,shales are characterized by poorly petrophysical properties with low porosity and permeability.Macropores and mesopores(2-50 nm)are well-developed in shales compared with micropores.For coals,abundant organic matters are expected to promote the development of micropores,and clay minerals significantly control the performance of mesopores.For shales and sandstones,micropores are mainly observed in organic matters,whereas clay minerals are the important contributor to mesopores.Moreover,micropore SSA significantly deter-mines the adsorption capacity of CURs and sandstones have the best pore connectivity.The permeability of CURs is positively associated with the macropore PV since macropores serve as the main flow paths for gas seepage.Additionally,we also proposed that effective porosity has a significant effect on the permeability of CURs.The findings of this study could enhance the understanding of the multiscale pore structure of CURs and provide insights into the mechanisms that control gas storage,transport,and subsequent co-production for continuous unconventional natural gas(CUNG)in the Qinshui Basin and other coal-bearing basins worldwide.展开更多
基金funded by the National Science and technology Major Project(2008ZX05001)
文摘The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.
基金supported by the National Major Grant of"Accumulation Law,Key Technologies and Evaluations of the Stratigraphic Reservoirs"(No.2008ZX05000-001) from the Research Institute of Petroleum Exploration & Development,PetroChina
文摘"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.
基金National Iranian Oil Company-Exploration Directorate(NIOC-EXP)the Petroleum Geology and Geochemistry Research Center(PGGRC)of Shahid Chamran University of Ahvaz.
文摘A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhdumi and Sarvak reservoirs of the super-giant Azadegan oilfield, SW Iran. The geochemical data indicate that the oil samples, with medium to high level of thermal maturity, have been generated from the anoxic marine marl/carbonate source rock(s). The Sargelu(Jurassic) and Garau(Cretaceous) formations are introduced as the main source rocks for the studied oils. The dendrogram obtained from the cluster analysis of high-resolution gas chromatography data introduces two main oil groups including Fahliyan reservoir, and Kazhdumi along with Sarvak/Gadvan reservoirs. This is confirmed by C7 Halpern star diagram, indicating that, the light oil fraction from Fahliyan reservoir is distinct from the others. Also, different pressure gradient of the Fahliyan Formation(over-pressured) relative to other reservoirs(normally-pressured) show the presence of compartments. The relation between toluene/n-heptane and n-heptane/methylcyclohexane represents the compartmentalization due to maturation/evaporative fractionation for Fahliyan and water washing for other studied reservoirs. Also, the impermeable upper part of the Fahliyan Formation and thin interbedded shaly layers in the Kazhdumi, Sarvak and Gadvan formations have controlled reservoir compartmentalization.
基金the financial support of the National Natural Science Foundation of China(Grant Nos.42102208,41802183 and 41872132)the Fundamental Research Funds for the Central Universities(JZ2021HGQA0265)。
文摘The pore structure of continuous unconven-tional reservoirs(CURs)in coal measures was investigated using different technologies for 29 samples(9 coal samples,9 shale samples,and 11 sandstone samples)from Qinshui Basin,China.Results show that coals have relatively high porosities and permeabilities ranging from 4.02%to 5.19%and 0.001 to 0.042 mD,respectively.Micropores(<2 nm)are well-developed in coals and contribute to the majority of pore volume(PV)and specific surface area(SSA).The porosities and permeabilities are between 1.19%-4.11%,and 0.0001-0.004 mD of sand-stones with a predominance of macropores(>50 nm).However,shales are characterized by poorly petrophysical properties with low porosity and permeability.Macropores and mesopores(2-50 nm)are well-developed in shales compared with micropores.For coals,abundant organic matters are expected to promote the development of micropores,and clay minerals significantly control the performance of mesopores.For shales and sandstones,micropores are mainly observed in organic matters,whereas clay minerals are the important contributor to mesopores.Moreover,micropore SSA significantly deter-mines the adsorption capacity of CURs and sandstones have the best pore connectivity.The permeability of CURs is positively associated with the macropore PV since macropores serve as the main flow paths for gas seepage.Additionally,we also proposed that effective porosity has a significant effect on the permeability of CURs.The findings of this study could enhance the understanding of the multiscale pore structure of CURs and provide insights into the mechanisms that control gas storage,transport,and subsequent co-production for continuous unconventional natural gas(CUNG)in the Qinshui Basin and other coal-bearing basins worldwide.