A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ...The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.展开更多
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ...Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.展开更多
Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting...Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.展开更多
A novel-type delivery system consisting of a special feeding device and delivery device was developed and applied to a φ600 mm× 1 000 mm twin-roll casting system for producing the steel strip of 2 mm in thicknes...A novel-type delivery system consisting of a special feeding device and delivery device was developed and applied to a φ600 mm× 1 000 mm twin-roll casting system for producing the steel strip of 2 mm in thickness, and the characteristics of fluid flow and temperature field in the casting pool were investigated by mathematical simulation. The results showed that the melt from the novel-type delivery system was distributed to the casting pool along the width direction smoothly and uniformly. At the casting speed of 80 m/min, the difference of minimum residence time (groin) and actual average residence time (tave) among different ports of the delivery device was less than 0.18 s and 0.26 s respectively, and the average amplitude of level fluctuation was 0.3 mm to 0.6 mm on the free surface of casting pool. In addition, the difference of temperature on the free surface of the pool was below 20 K and the difference across the width direction of roll in different pool depths was less than 13 K, which indicates that the uniformity of temperature distribution was obtained in the casting pool to maintain the casting process and the defect-free steel strip can also be obtained.展开更多
It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitro...It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitrogen replacing part of carbon and addition of the nitrogen-fixing elements of niobium and titanium. And microstructure, degree of hardness and high-temperature wear resistance of its deposited metal samples were also investigated. It is found that the microstructure is martensite, residual austenite and carbonitride precipitates. As a result, the hardfacing metal with homogeneous distribution of very fine carbonitride particles had high hardness and excellent wear-re- sisting property during high-temperature wear, which could significantly extend the service life of continuous casting rolls.展开更多
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
文摘The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.
基金supported by National Key Research Development Planning Project of China (2004CB619108).
文摘Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.
文摘Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.
基金Item Sponsored by National Natural Science Foundation of China(51174049,51174052,51374057,51374062)
文摘A novel-type delivery system consisting of a special feeding device and delivery device was developed and applied to a φ600 mm× 1 000 mm twin-roll casting system for producing the steel strip of 2 mm in thickness, and the characteristics of fluid flow and temperature field in the casting pool were investigated by mathematical simulation. The results showed that the melt from the novel-type delivery system was distributed to the casting pool along the width direction smoothly and uniformly. At the casting speed of 80 m/min, the difference of minimum residence time (groin) and actual average residence time (tave) among different ports of the delivery device was less than 0.18 s and 0.26 s respectively, and the average amplitude of level fluctuation was 0.3 mm to 0.6 mm on the free surface of casting pool. In addition, the difference of temperature on the free surface of the pool was below 20 K and the difference across the width direction of roll in different pool depths was less than 13 K, which indicates that the uniformity of temperature distribution was obtained in the casting pool to maintain the casting process and the defect-free steel strip can also be obtained.
基金Item Sponsored by National Natural Science Foundation of China (51101050)Fundamental Research Funds for Central Universities of China (2009B30214)Natural Science Foundation of Jiangsu Province of China (BK2011257)
文摘It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitrogen replacing part of carbon and addition of the nitrogen-fixing elements of niobium and titanium. And microstructure, degree of hardness and high-temperature wear resistance of its deposited metal samples were also investigated. It is found that the microstructure is martensite, residual austenite and carbonitride precipitates. As a result, the hardfacing metal with homogeneous distribution of very fine carbonitride particles had high hardness and excellent wear-re- sisting property during high-temperature wear, which could significantly extend the service life of continuous casting rolls.