This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance mi...This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions.展开更多
Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of off...Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.展开更多
This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space...This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper.展开更多
This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The p...This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.展开更多
In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary poli...In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.展开更多
For a general multidimensional denumerable state Markov process with any initial state probability vector, the probability density function and its LS transform of the first passage time to a certain given state set a...For a general multidimensional denumerable state Markov process with any initial state probability vector, the probability density function and its LS transform of the first passage time to a certain given state set are obtained and the algorithms for them are derived. It is proved that the resulting errors of the algorithms are both uniform in their respective arguments.Some numerical results are presented.展开更多
Under a first order moment condition on the immigration mechanism,we show that an appropriately scaled supercritical and irreducible multi-type continuous state and continuous time branching process with immigration(C...Under a first order moment condition on the immigration mechanism,we show that an appropriately scaled supercritical and irreducible multi-type continuous state and continuous time branching process with immigration(CBI process)converges almost surely.If an x log(x)moment condition on the branching mechanism does not hold,then the limit is zero.If this x log(x)moment condition holds,then we prove L1 convergence as well.The projection of the limit on any left non-Perron eigenvector of the branching mean matrix is vanishing.If,in addition,a suitable extra power moment condition on the branching mechanism holds,then we provide the correct scaling for the projection of a CBI process on certain left non-Perron eigenvectors of the branching mean matrix in order to have almost sure and L1 limit.Moreover,under a second order moment condition on the branching and immigration mechanisms,we prove L2 convergence of an appropriately scaled process and the above-mentioned projections as well.A representation of the limits is also provided under the same moment conditions.展开更多
We study the asymptotic relation among the maximum of continuous weakly and strongly dependent stationary Gaussian process, the maximum of this process sampled at discrete time points, and the partial sum of this proc...We study the asymptotic relation among the maximum of continuous weakly and strongly dependent stationary Gaussian process, the maximum of this process sampled at discrete time points, and the partial sum of this process. It is shown that these two extreme values and the sum are asymptotically independent if the grid of the discrete time points is sufficiently sparse and the Gaussian process is weakly dependent, and asymptotically dependent if the grid points are Pickands grids or dense grids.展开更多
A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the...A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the birth and death process. Through the Kolmogorov forward equation and the theory of moment generating function, the corresponding population expectations are studied. The theoretical result of the stochastic model and deterministic version is also given. Finally, numerical simulations are carried out to substantiate the theoretical results of random walk.展开更多
In this paper we study the average sample-path cost (ASPC) problem for continuous-time Markov decision processes in Polish spaces. To the best of our knowledge, this paper is a first attempt to study the ASPC criter...In this paper we study the average sample-path cost (ASPC) problem for continuous-time Markov decision processes in Polish spaces. To the best of our knowledge, this paper is a first attempt to study the ASPC criterion on continuous-time MDPs with Polish state and action spaces. The corresponding transition rates are allowed to be unbounded, and the cost rates may have neither upper nor lower bounds. Under some mild hypotheses, we prove the existence of (ε〉 0)-ASPC optimal stationary policies based on two different approaches: one is the "optimality equation" approach and the other is the "two optimality inequalities" approach.展开更多
This paper attempts to study the convergence of optimal values and optimal policies of continuous-time Markov decision processes(CTMDP for short)under the constrained average criteria. For a given original model M_∞o...This paper attempts to study the convergence of optimal values and optimal policies of continuous-time Markov decision processes(CTMDP for short)under the constrained average criteria. For a given original model M_∞of CTMDP with denumerable states and a sequence {M_n} of CTMDP with finite states, we give a new convergence condition to ensure that the optimal values and optimal policies of {M_n} converge to the optimal value and optimal policy of M_∞as the state space Snof Mnconverges to the state space S_∞of M_∞, respectively. The transition rates and cost/reward functions of M_∞are allowed to be unbounded. Our approach can be viewed as a combination method of linear program and Lagrange multipliers.展开更多
This paper is concerned with the convergence of a sequence of discrete-time Markov decision processes(DTMDPs)with constraints,state-action dependent discount factors,and possibly unbounded costs.Using the convex analy...This paper is concerned with the convergence of a sequence of discrete-time Markov decision processes(DTMDPs)with constraints,state-action dependent discount factors,and possibly unbounded costs.Using the convex analytic approach under mild conditions,we prove that the optimal values and optimal policies of the original DTMDPs converge to those of the"limit"one.Furthermore,we show that any countablestate DTMDP can be approximated by a sequence of finite-state DTMDPs,which are constructed using the truncation technique.Finally,we illustrate the approximation by solving a controlled queueing system numerically,and give the corresponding error bound of the approximation.展开更多
基金supported by the National Natural Science Foundation of China(10801056)the Natural Science Foundation of Ningbo(2010A610094)
文摘This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions.
文摘Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.
文摘This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper.
文摘This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.
文摘In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.
文摘For a general multidimensional denumerable state Markov process with any initial state probability vector, the probability density function and its LS transform of the first passage time to a certain given state set are obtained and the algorithms for them are derived. It is proved that the resulting errors of the algorithms are both uniform in their respective arguments.Some numerical results are presented.
基金supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciencessupported by the Royal Society Newton International Fellowship and the EU-funded Hungarian(Grant No.EFOP-3.6.1-16-2016-00008)。
文摘Under a first order moment condition on the immigration mechanism,we show that an appropriately scaled supercritical and irreducible multi-type continuous state and continuous time branching process with immigration(CBI process)converges almost surely.If an x log(x)moment condition on the branching mechanism does not hold,then the limit is zero.If this x log(x)moment condition holds,then we prove L1 convergence as well.The projection of the limit on any left non-Perron eigenvector of the branching mean matrix is vanishing.If,in addition,a suitable extra power moment condition on the branching mechanism holds,then we provide the correct scaling for the projection of a CBI process on certain left non-Perron eigenvectors of the branching mean matrix in order to have almost sure and L1 limit.Moreover,under a second order moment condition on the branching and immigration mechanisms,we prove L2 convergence of an appropriately scaled process and the above-mentioned projections as well.A representation of the limits is also provided under the same moment conditions.
基金The authors would like to thank the referees for their careful reading and helpful comments that improved the quality of the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11326175), the Natural Science Foundation of Zhejiang Province (Nos. LQ14A010012, LY15A010019), the Natural Science Foundation of 3iangsu Higher Education Institution of China (No. 14KJB110023), and the Research Foundation of SUST.
文摘We study the asymptotic relation among the maximum of continuous weakly and strongly dependent stationary Gaussian process, the maximum of this process sampled at discrete time points, and the partial sum of this process. It is shown that these two extreme values and the sum are asymptotically independent if the grid of the discrete time points is sufficiently sparse and the Gaussian process is weakly dependent, and asymptotically dependent if the grid points are Pickands grids or dense grids.
文摘A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the birth and death process. Through the Kolmogorov forward equation and the theory of moment generating function, the corresponding population expectations are studied. The theoretical result of the stochastic model and deterministic version is also given. Finally, numerical simulations are carried out to substantiate the theoretical results of random walk.
基金Supported by the National Natural Science Foundation of China (No.10801056)the Natural Science Foundation of Ningbo (No. 2010A610094)K.C. Wong Magna Fund in Ningbo University
文摘In this paper we study the average sample-path cost (ASPC) problem for continuous-time Markov decision processes in Polish spaces. To the best of our knowledge, this paper is a first attempt to study the ASPC criterion on continuous-time MDPs with Polish state and action spaces. The corresponding transition rates are allowed to be unbounded, and the cost rates may have neither upper nor lower bounds. Under some mild hypotheses, we prove the existence of (ε〉 0)-ASPC optimal stationary policies based on two different approaches: one is the "optimality equation" approach and the other is the "two optimality inequalities" approach.
文摘This paper attempts to study the convergence of optimal values and optimal policies of continuous-time Markov decision processes(CTMDP for short)under the constrained average criteria. For a given original model M_∞of CTMDP with denumerable states and a sequence {M_n} of CTMDP with finite states, we give a new convergence condition to ensure that the optimal values and optimal policies of {M_n} converge to the optimal value and optimal policy of M_∞as the state space Snof Mnconverges to the state space S_∞of M_∞, respectively. The transition rates and cost/reward functions of M_∞are allowed to be unbounded. Our approach can be viewed as a combination method of linear program and Lagrange multipliers.
基金supported by National Natural Science Foundation of China (Grant Nos. 61374067 and 41271076)
文摘This paper is concerned with the convergence of a sequence of discrete-time Markov decision processes(DTMDPs)with constraints,state-action dependent discount factors,and possibly unbounded costs.Using the convex analytic approach under mild conditions,we prove that the optimal values and optimal policies of the original DTMDPs converge to those of the"limit"one.Furthermore,we show that any countablestate DTMDP can be approximated by a sequence of finite-state DTMDPs,which are constructed using the truncation technique.Finally,we illustrate the approximation by solving a controlled queueing system numerically,and give the corresponding error bound of the approximation.