In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditi...The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditions for the existence of fuzzy state feedback controller are presented in terms of linear matrix inequality (LMI). The proposed robust H ∞ control laws guarantee that the resulting closed-loop system is regular, impulse free, and stable with prescribed H ∞ norm bounded constraint for all admissible uncertainties. Finally, a numerical example is provided to demonstrate the validity of the proposed method.展开更多
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l...Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.展开更多
This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to ...This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.展开更多
This paper presents an improved observer-based indirect adaptive fuzzy control scheme for multiinput-multioutput (MIMO) nonlinear time-delay systems.The control scheme synthesizes adaptive fuzzy control with adaptive ...This paper presents an improved observer-based indirect adaptive fuzzy control scheme for multiinput-multioutput (MIMO) nonlinear time-delay systems.The control scheme synthesizes adaptive fuzzy control with adaptive fuzzy identification.An observer is designed to observe the system state,and an identifier is developed to identify the unknown parts of the system.The update laws for parameters utilize two types of errors in the adaptive time-delay fuzzy logic systems,the observation error and the identification error.Performance analysis proves the superiority of the update laws in terms of faster and improved tracking and parameter convergence.Simulation results of two-link manipulator demonstrate the effectiveness of the improved control scheme.展开更多
This paper considers the problem of stochastic stabilization and energy-to-peak control for a class of discrete stochastic fuzzy systems with interval time-delays. The objective is to design a state feedback controlle...This paper considers the problem of stochastic stabilization and energy-to-peak control for a class of discrete stochastic fuzzy systems with interval time-delays. The objective is to design a state feedback controller such that the closed-loop system is stochastic stable and satisfies energy-to-peak performance. Based on the idea of interval partitioning, some new sufficient conditions are presented in LMI.展开更多
This paper studies the robust adaptive fuzzy cooperative tracking control problem for a class of uncertain non-linear multi-agent systems with multiple time delays and dead-zone non-linearities.First,based on the impl...This paper studies the robust adaptive fuzzy cooperative tracking control problem for a class of uncertain non-linear multi-agent systems with multiple time delays and dead-zone non-linearities.First,based on the implicit function theorem,the non-affine form of the multi-agent system can be converted into the corresponding affine form.Then,using the local state information of neighbouring agents,a novel adaptive fuzzy cooperative tracking controller with the corresponding parameter-updated laws is designed based on undirected communication topologies.Furthermore,it is shown that all the closed-loop signals are bounded,and all follower nodes asymptotically tracking to the leader can be achieved in the presence of time-delayed perturbations and unknown dead-zone inputs.Finally,simulation results are given to demonstrate the effectiveness of the proposed adaptive control scheme.展开更多
This paper investigates the problem of delaydependent robust H_(∞) state-feedback control for a class of uncertain discrete-time state-delayed T-S fuzzy systems.The state delay is assumed to be time-varying and of an...This paper investigates the problem of delaydependent robust H_(∞) state-feedback control for a class of uncertain discrete-time state-delayed T-S fuzzy systems.The state delay is assumed to be time-varying and of an interval-like type with the lower and upper bounds.The parameter uncertainties are assumed to have a structured linear-fractional form.Based on a novel fuzzy-basisdependent Lyapunov-Krasovskii functional incorporating a free-weighting matrix approach,some new delaydependent sufficient conditions for robust H_(∞) performance analysis and controller synthesis are derived in terms of linear matrix inequalities(LMIs).Numerical examples are also provided to illustrate the effectiveness of the proposed approaches.展开更多
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
文摘The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditions for the existence of fuzzy state feedback controller are presented in terms of linear matrix inequality (LMI). The proposed robust H ∞ control laws guarantee that the resulting closed-loop system is regular, impulse free, and stable with prescribed H ∞ norm bounded constraint for all admissible uncertainties. Finally, a numerical example is provided to demonstrate the validity of the proposed method.
文摘Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.
文摘This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 60974028,60804021)
文摘This paper presents an improved observer-based indirect adaptive fuzzy control scheme for multiinput-multioutput (MIMO) nonlinear time-delay systems.The control scheme synthesizes adaptive fuzzy control with adaptive fuzzy identification.An observer is designed to observe the system state,and an identifier is developed to identify the unknown parts of the system.The update laws for parameters utilize two types of errors in the adaptive time-delay fuzzy logic systems,the observation error and the identification error.Performance analysis proves the superiority of the update laws in terms of faster and improved tracking and parameter convergence.Simulation results of two-link manipulator demonstrate the effectiveness of the improved control scheme.
基金supported by the National Natural Science Foundation of China (No. 61004046)the China Postdoctoral Science Foundation (No.20110491336)+1 种基金the Postdoctoral Science Foundation of Jiangsu Province (No. 1001007C)the Young and Middle-Aged Scientists Research Awards Fund of Shandong Province (No. 2009BSB01450)
文摘This paper considers the problem of stochastic stabilization and energy-to-peak control for a class of discrete stochastic fuzzy systems with interval time-delays. The objective is to design a state feedback controller such that the closed-loop system is stochastic stable and satisfies energy-to-peak performance. Based on the idea of interval partitioning, some new sufficient conditions are presented in LMI.
基金the Funds of National Science ofChina[grant number 61273011],[grant number 61174215].
文摘This paper studies the robust adaptive fuzzy cooperative tracking control problem for a class of uncertain non-linear multi-agent systems with multiple time delays and dead-zone non-linearities.First,based on the implicit function theorem,the non-affine form of the multi-agent system can be converted into the corresponding affine form.Then,using the local state information of neighbouring agents,a novel adaptive fuzzy cooperative tracking controller with the corresponding parameter-updated laws is designed based on undirected communication topologies.Furthermore,it is shown that all the closed-loop signals are bounded,and all follower nodes asymptotically tracking to the leader can be achieved in the presence of time-delayed perturbations and unknown dead-zone inputs.Finally,simulation results are given to demonstrate the effectiveness of the proposed adaptive control scheme.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region of China under Project CityU/112907.
文摘This paper investigates the problem of delaydependent robust H_(∞) state-feedback control for a class of uncertain discrete-time state-delayed T-S fuzzy systems.The state delay is assumed to be time-varying and of an interval-like type with the lower and upper bounds.The parameter uncertainties are assumed to have a structured linear-fractional form.Based on a novel fuzzy-basisdependent Lyapunov-Krasovskii functional incorporating a free-weighting matrix approach,some new delaydependent sufficient conditions for robust H_(∞) performance analysis and controller synthesis are derived in terms of linear matrix inequalities(LMIs).Numerical examples are also provided to illustrate the effectiveness of the proposed approaches.