期刊文献+
共找到481,682篇文章
< 1 2 250 >
每页显示 20 50 100
Editorial for Multiscale&Multifield Coupling in Geomechanics
1
作者 Min Wang Pengzhi Pan +1 位作者 Andrew H.C.Chan Y.T.Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1919-1921,共3页
We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on M... We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue. 展开更多
关键词 materials. GATHERING mechanics
下载PDF
Induction System for a Fusion Reactor: Quantum Mechanics Chained up
2
作者 Friedrich Björn Grimm 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期158-166,共9页
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn... In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production. 展开更多
关键词 Fusion Reactor Plasma Confinement Quantum mechanics Clean Energy
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
3
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General Relativity Quantum mechanics Space Time Dark Matter A New Fundamental Constant “K”
下载PDF
An 8-Node Plane Hybrid Element for StructuralMechanics Problems Based on the Hellinger-Reissner Variational Principle
4
作者 Haonan Li WeiWang +1 位作者 Quan Shen Linquan Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1277-1299,共23页
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat... The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy. 展开更多
关键词 8-node plane hybrid element Hellinger-Reissner variational principle locking behaviors structural mechanics problems
下载PDF
Improved Units of Measure in Rotational Mechanics
5
作者 Richard James Petti 《World Journal of Mechanics》 2024年第1期1-7,共7页
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene... The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units. 展开更多
关键词 Rotational mechanics Angular Unit TORQUE Moment of Inertia Angular Momentum General Covariance
下载PDF
Investigation of the Micro-Mechanics of an Extruded Precipitation-Strengthened Magnesium Alloy under Cyclic Loading
6
作者 Chuhao Liu Xiaodan Zhang +1 位作者 Huamiao Wang Yinghong Peng 《Journal of Materials Science and Chemical Engineering》 2024年第7期40-52,共13页
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc... Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip. 展开更多
关键词 Cyclic Deformation Magnesium Alloy In-Situ Neutron Diffraction Precipitation Strengthening Crystal Plasticity Lattice Strain mechanism Evolution
下载PDF
Research on the Assessment System of Computational Mechanics Courses Based on the TOPSIS Entropy Weight Model
7
作者 Huijun Ning Ruhuan Yu +1 位作者 Qianshu Wang Mingming Lin 《Journal of Contemporary Educational Research》 2024年第6期166-182,共17页
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu... This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality. 展开更多
关键词 TOPSIS entropy weight model Computational mechanics Course assessment and evaluation system Assessment model
下载PDF
Continuous-discontinuous element method for three-dimensional thermal cracking of rocks 被引量:2
8
作者 Wen Nie Junlin Wang +1 位作者 Chun Feng Yiming Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2917-2929,共13页
Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle in... Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle induced areas.It is a scenario of strong coupled thermomechanical process involving discontinuity behaviours of rocks.In this context,a numerical model was proposed to investigate the thermal cracking of rocks,in a framework of the continuous-discontinuous element method(CDEM)for efficiently capturing the initiation and propagation of multiple cracks.A simplex integration strategy was adopted to account for the influences of temperature-dependent material properties.Several benchmark tests were considered and the obtained results were compared with analytical solutions and numerical results from the literature.The results show that the fracture degree of the cases when considering temperature-dependent material parameters had 10%differences approximately compared with the cases with constant parameters. 展开更多
关键词 Rock thermal cracking continuous-discontinuous element Simplex integration Temperature dependence Numerical simulation
下载PDF
Application and prospects of 3D printing in physical experiments of rock mass mechanics and engineering:materials,methodologies and models 被引量:2
9
作者 Qingjia Niu Lishuai Jiang +3 位作者 Chunang Li Yang Zhao Qingbiao Wang Anying Yuan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期1-17,共17页
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro... The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed. 展开更多
关键词 3D printing Rock mass mechanics Prefabricated cracks Rock-like material Fractured rock mass
下载PDF
Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication 被引量:1
10
作者 Shuang Ma Junfeng Wu +5 位作者 Zhihua Liu Rong He Yuechao Wang Lianqing Liu Tianlu Wang Wenxue Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第4期388-402,共15页
Cell mechanics is essential to cell development and function,and its dynamics evolution reflects the physiological state of cells.Here,we investigate the dynamical mechanical properties of single cells under various d... Cell mechanics is essential to cell development and function,and its dynamics evolution reflects the physiological state of cells.Here,we investigate the dynamical mechanical properties of single cells under various drug conditions,and present two mathematical approaches to quantitatively characterizing the cell physiological state.It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate,and can be mathematically characterized by a linear timeinvariant dynamical model.It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions.Furthermore,it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties,and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model.This study builds a relationship between the cellular mechanical properties and the cellular physiological state,adding information for evaluating drug efficacy. 展开更多
关键词 Cellular mechanical properties CYTOSKELETON Drug efficacy evaluation Cell system modelling Linear regression
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
11
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi Formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
12
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 Rock mechanics mechanical property Seepage pressure Numerical simulation MICROCRACKS
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:1
13
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Introduction to Synchronized Kinematic and Electromagnetic Mechanics
14
作者 André Michaud 《Journal of Modern Physics》 CAS 2023年第6期876-932,共57页
Introduction to fundamental physics according to the parallel harmonization of kinematic and electromagnetic mechanics, in accordance with Wilhelm Wien’s project, which involved the integration in kinematic mechanics... Introduction to fundamental physics according to the parallel harmonization of kinematic and electromagnetic mechanics, in accordance with Wilhelm Wien’s project, which involved the integration in kinematic mechanics of the mass increase of the electron as a function of its velocity, as measured by Walter Kaufmann with his bubble-chamber experiments, and analyzed and confirmed by H. A. Lorentz and all the leading edge physicists who then re-analyzed this data. 展开更多
关键词 Kinematic mechanics Electromagnetic mechanics Electrostatic Recall Constant Restoration Force GRAVITATION
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:1
15
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
16
作者 Feng Lin Xia-Ting Feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters High power Field experiment mechanical mining
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
17
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:1
18
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution mechanical flexibility Hydrogen evolution reaction
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
19
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Recent advances in the mechanics of 2D materials
20
作者 Guorui Wang Hongyu Hou +6 位作者 Yunfeng Yan Ritesh Jagatramka Amir Shirsalimian Yafei Wang Binzhao Li Matthew Daly Changhong Cao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期31-86,共56页
The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nan... The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions. 展开更多
关键词 2D materials mechanical property interfacial mechanics atomic force microscopy(AFM) in situ electron microscopy(SEM and TEM)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部