Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.Howe...After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.However,the reduction in deformation during the HR process initiated stress concentration at the slab surface,and the crack risk increased.To effectively evaluate the risk of slab surface cracks under these complex conditions,the effect of the HR on the austenite recrystallization and thermoplasticity of a microalloyed slab surface was investigated by 15-pass reduction thermal simulation according to the wide and thick slab continuous casting process.The softening fraction was introduced as a global internal variable to quantitatively analyze various recrystallized re-refined grains.After the critical strain reaches the critical strain of dynamic recrystallization,a variety of recrystallization modes alternately occur.Among them,the contribution rate of dynamic crystallization to the later refinement reaches more than 50%.The contribution rates of static recrystallization and metadynamic recrystallization to grain refinement are almost the same.The thermoplasticity of the slab surface first increases and then decreases with increasing reduction pass.It was verified by transmission electron microscopy that the main reason for the decrease in thermoplasticity is that the dislocation multiplication rate increases,resulting in a sharp increase in stress and a decrease in thermoplasticity.展开更多
Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metallic materials which combines advantages of both directional solidification technology and continuous casting tech...Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metallic materials which combines advantages of both directional solidification technology and continuous casting technology. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the failure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously directional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.展开更多
Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur ...Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur during continuous casting,which includes depression,longitudinal cracks,deep oscillation marks,and severe level fluctuation with slag entrapment.The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification.This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification.New achievements in the mechanism of peritectic reaction and transformation have been listed.Finally,countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized.Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers.展开更多
The distributions of heat flux along the height and the circumferential direction of round billet mould were measured continuously.The influence of casting speed,carbon content,powder,and pouring temperature on the av...The distributions of heat flux along the height and the circumferential direction of round billet mould were measured continuously.The influence of casting speed,carbon content,powder,and pouring temperature on the average longitudinal and circumferential heat flux in the "high heat flux region" was discussed.The experimental and analytical results provide a basis for an intelligent mould with online detection of defects,adjustment of operational parameters,optimization of the monitoring system,and even prediction of abnormal heat transfer.展开更多
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast...The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.展开更多
In view of the service failure and low continuous casting production efficiency due to the corrosion of refractories at the slag-line in submerged entry nozzles,a submerged entry nozzle for low-carbon aluminum killed ...In view of the service failure and low continuous casting production efficiency due to the corrosion of refractories at the slag-line in submerged entry nozzles,a submerged entry nozzle for low-carbon aluminum killed steel continuous casting in one steel plant was sampled and taken as the research object to analyze the causes and the mechanism of refractory corrosion at the slag-line.The results show that the core issue of the corrosion and necking of the slag-line materials is that the slag-line material are eroded,dissolved,and reacted by the mold flux gradually.Therefore,it is important to suppress or avoid the contact and reaction between the mold flux and slag-line materials.展开更多
A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination o...A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT. The effects of structural parameters on fluid flow, temperature field and solidification during A-EMDC process were investigated numerically. The results show that structural parameters such as annulus gap width, annulus gap position, and centre pipe length influence the flow and temperature fields. The smaller the annulus gap width is, the more uniform the temperature is, and the smaller the temperature gradient is. With increasing the centre pipe length, the circular flow would decrease due to the dislocation of centre pipe. Specially, when the annulus gap is located at periphery of the billet, the temperature gradient of the longitudinal direction in the solidification region falls evidently.展开更多
Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ...The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.展开更多
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate...Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.展开更多
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,th...It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.展开更多
Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to impr...Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to improve the level of automation operation and reducing labor intensity of staff and workers.Especially under the support of MES information system.Advanced and practical technology is adopted in converter,refining and continuous casting process.In recent years,production management and control,energy management and control,material tracking,cost control and equipment operation and maintenance and reducing personnel to new achieve-ments in reducing personnel.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that ...Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.展开更多
To obtain semi-solid Al alloy billet with high quality, an investigation was carried out by imposing a multiple magnetic field from the outside of a copper mold in the continuous casting. AISi6Mg2 alloy designed for s...To obtain semi-solid Al alloy billet with high quality, an investigation was carried out by imposing a multiple magnetic field from the outside of a copper mold in the continuous casting. AISi6Mg2 alloy designed for semi-solid metal (SSM) processing was continuously cast through a submerged entry nozzle under various conditions. Effects of multiple magnetic field on meniscus motion, temperature distribution and billet quality were examined. The experimental results showed that meniscus disturbance caused by electromagnetic stirring could be controlled effectively and the surface quality of semi-solid AI alloy billet was improved greatly, and an uniformly fine, globular microstructure across the transverse section of the billet was achieved by optimizing the distribution of multiple magnetic field.展开更多
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi...Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.展开更多
A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microst...A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.展开更多
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金supported by the National Natural Science Foundation of China(51974078)the Applied Basic Research Program of Liaoning Province(2022JH2/101300002,2022JH25/10200003)the Applied Basic Research Program of Liaoning Province,and the State Key Laboratory of Metal Material for Marine Equipment and Application Project(SKLMEA-K202204).
文摘After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.However,the reduction in deformation during the HR process initiated stress concentration at the slab surface,and the crack risk increased.To effectively evaluate the risk of slab surface cracks under these complex conditions,the effect of the HR on the austenite recrystallization and thermoplasticity of a microalloyed slab surface was investigated by 15-pass reduction thermal simulation according to the wide and thick slab continuous casting process.The softening fraction was introduced as a global internal variable to quantitatively analyze various recrystallized re-refined grains.After the critical strain reaches the critical strain of dynamic recrystallization,a variety of recrystallization modes alternately occur.Among them,the contribution rate of dynamic crystallization to the later refinement reaches more than 50%.The contribution rates of static recrystallization and metadynamic recrystallization to grain refinement are almost the same.The thermoplasticity of the slab surface first increases and then decreases with increasing reduction pass.It was verified by transmission electron microscopy that the main reason for the decrease in thermoplasticity is that the dislocation multiplication rate increases,resulting in a sharp increase in stress and a decrease in thermoplasticity.
文摘Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metallic materials which combines advantages of both directional solidification technology and continuous casting technology. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the failure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously directional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)the National Natural Science Foundation of China(No.51874026)。
文摘Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur during continuous casting,which includes depression,longitudinal cracks,deep oscillation marks,and severe level fluctuation with slag entrapment.The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification.This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification.New achievements in the mechanism of peritectic reaction and transformation have been listed.Finally,countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized.Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers.
基金Item Sponsored by Science and Technology Research Project of Ministry of Education of China(03051)
文摘The distributions of heat flux along the height and the circumferential direction of round billet mould were measured continuously.The influence of casting speed,carbon content,powder,and pouring temperature on the average longitudinal and circumferential heat flux in the "high heat flux region" was discussed.The experimental and analytical results provide a basis for an intelligent mould with online detection of defects,adjustment of operational parameters,optimization of the monitoring system,and even prediction of abnormal heat transfer.
基金This work is financially supported by Basic Scientific Project of Liaoning Provincial Department of Education(LJKMZ20220591)Science and Technology Plan Project of Changzhou,China(CQ20220057).
文摘The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.
基金the financial support from the National Natural Science Foundation of China(Grant No.52174302,No.51932008 and No.52304347)the Central China Thousand Talents Project(204200510011).
文摘In view of the service failure and low continuous casting production efficiency due to the corrosion of refractories at the slag-line in submerged entry nozzles,a submerged entry nozzle for low-carbon aluminum killed steel continuous casting in one steel plant was sampled and taken as the research object to analyze the causes and the mechanism of refractory corrosion at the slag-line.The results show that the core issue of the corrosion and necking of the slag-line materials is that the slag-line material are eroded,dissolved,and reacted by the mold flux gradually.Therefore,it is important to suppress or avoid the contact and reaction between the mold flux and slag-line materials.
基金Project (2009AA03Z534) supported by the Hi-tech Research and Development Program of China Project (2006CB605203) supported by National Basic Research Program of China
文摘A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT. The effects of structural parameters on fluid flow, temperature field and solidification during A-EMDC process were investigated numerically. The results show that structural parameters such as annulus gap width, annulus gap position, and centre pipe length influence the flow and temperature fields. The smaller the annulus gap width is, the more uniform the temperature is, and the smaller the temperature gradient is. With increasing the centre pipe length, the circular flow would decrease due to the dislocation of centre pipe. Specially, when the annulus gap is located at periphery of the billet, the temperature gradient of the longitudinal direction in the solidification region falls evidently.
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
基金Project(50674066)supported by the National Natural Science Foundation of China
文摘The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.
基金Project(51374025) supported by the National Natural Science Foundation of ChinaProject(2014Z-05) supported by the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(2152020) supported by the Beijing Natural Science Foundation,China
文摘Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.
基金the support from the International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)the Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)+1 种基金the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JH-ZDZH-0039)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011)。
文摘It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.
文摘Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to improve the level of automation operation and reducing labor intensity of staff and workers.Especially under the support of MES information system.Advanced and practical technology is adopted in converter,refining and continuous casting process.In recent years,production management and control,energy management and control,material tracking,cost control and equipment operation and maintenance and reducing personnel to new achieve-ments in reducing personnel.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
文摘Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.
文摘To obtain semi-solid Al alloy billet with high quality, an investigation was carried out by imposing a multiple magnetic field from the outside of a copper mold in the continuous casting. AISi6Mg2 alloy designed for semi-solid metal (SSM) processing was continuously cast through a submerged entry nozzle under various conditions. Effects of multiple magnetic field on meniscus motion, temperature distribution and billet quality were examined. The experimental results showed that meniscus disturbance caused by electromagnetic stirring could be controlled effectively and the surface quality of semi-solid AI alloy billet was improved greatly, and an uniformly fine, globular microstructure across the transverse section of the billet was achieved by optimizing the distribution of multiple magnetic field.
文摘Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.
基金supported by the National High Technology Research and Development Program of China (No.2011BAE23B00)
文摘A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.