This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by usin...This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.展开更多
The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the e...The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability.展开更多
基金Supported by the National Natural Science Foundation of China(11561055)the Natural Science Foundation of Ningxia(2018AAC03057)。
文摘This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.
基金the firancinal support of the National Natural Science Foundation of China(Grant No:51769011)for this work,and the authors are also deeply grateful to the editors and revewerse for tbeir rigorous work and valuable comments.
文摘The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability.