A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial...A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.展开更多
基金supported by the National Natural Science Foundation of China(60972095)Shaanxi Province Education Office Research Plan(2010JK589)
文摘A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.