期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Effect of Time Step Size and Turbulence Model on the Open Water Hydrodynamic Performance Prediction of Contra-Rotating Propellers 被引量:15
1
作者 王展智 熊鹰 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期193-204,共12页
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati... A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers. 展开更多
关键词 contra-rotating propeller open water performance RANS time step size turbulence model
下载PDF
Unsteady Flow Condition between Front and Rear Rotor of Contra-Rotating Small Sized Axial Fan 被引量:3
2
作者 Toru Shigemitsu Hiroaki Fukuda Katsuhiko Hirosawa 《Open Journal of Fluid Dynamics》 2017年第3期371-385,共15页
Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the perfor... Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the performance and stable operation. The wake and potential interference occur between the front and rear rotors and leakage flow from the front rotor tip influences on the flow condition of the rear rotor near the shroud when the blade row distance is small. Therefore, it is important to clarify the flow condition between front and rear rotors. The fan static pressure curves were obtained by the experimental apparatus and the numerical analysis was also conducted to investigate the internal flow between front and rear rotors. The leakage flow from the front rotor tip reaches the leading edge of the rear rotor when the blade row distance is small as L = 10 mm and the pressure fluctuations at the leading edge of the rear rotor tip becomes larger than those at other radial positions. In the present paper, the vorticity contour between front and rear rotors is shown and pressure fluctuations related to the leakage flow from the front rotor is investigated using the numerical analysis result. Then, suitable blade row distance for the contra-rotating small sized axial fan is discussed based on the internal flow condition. 展开更多
关键词 TURBOMACHINERY contra-rotating Axial FLOW FAN LEAKAGE FLOW WAKE
下载PDF
Study on Contra-Rotating Small-Sized Axial Flow Hydro Turbine 被引量:2
3
作者 Ryosuke Sonohata Junichiro Fukutomi Toru Toru Shigemitsu 《Open Journal of Fluid Dynamics》 2012年第4期318-323,共6页
It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydr... It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high per- formance and wide flow passage. Therefore, we adopted contra-rotating rotors which can be expected to achieve high performance and low-solidity rotors with wide flow passage in order to accomplish high performance and stable opera- tion. Final goal on this study is development of an electric appliance type small hydro turbine which has high portability and makes an effective use of the unused small hydro power energy source. In the present paper, the performance and the internal flow conditions in detail of contra-rotating small-sized axial flow hydro turbine are shown as a first step of the research with the numerical flow analysis. Then, a capability adopting contra-rotating rotors to an electric appliance type small hydro turbine was discussed. Furthermore, the high performance design for it was considered by the numeri- cal analysis results. 展开更多
关键词 Small-Sized AXIAL TURBINE contra-rotating ROTOR Electric APPLIANCE RENEWABLE Energy Internal Flow
下载PDF
Modeling and Numerical Simulation of Wings Effect on Turbulent Flow between two contra-rotating cylinders 被引量:1
4
作者 Maher Raddaoui 《Journal of Modern Physics》 2011年第5期392-397,共6页
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me... Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings. 展开更多
关键词 Pollution Turbulence Combustion WING MODELING Numerical Simulation contra-rotating Cylinders REYNOLDS Stress Model Source TERM
下载PDF
Characteristics of an Axial-flux Permanent Magnet Synchronous Machine with Contra-rotating Rotors under Unbalanced Load Condition from 3-D Finite Element Analysis 被引量:1
5
作者 Yichang Zhong Shoudao Huang +1 位作者 Derong Luo Xuan Wu 《CES Transactions on Electrical Machines and Systems》 2018年第2期220-225,共6页
During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition... During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper. 展开更多
关键词 3-D finite element analysis(FEM) back electromagnetic force(back-EMF) contra-rotating rotors permanent magnet machines.
下载PDF
Internal Flow Condition between Front and Rear Rotor of Contra-Rotating Small-Sized Axial Fan at Low Flow Rate
6
作者 Toru Shigemitsu Kensuke Tanaka +1 位作者 Katsuhiko Hirosawa Keisuke Miyazaki 《Open Journal of Fluid Dynamics》 2017年第4期709-723,共15页
Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at th... Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate. 展开更多
关键词 Small-Sized Axial FAN contra-rotating Rotors WAKE Potential Interference Numerical Analysis
下载PDF
Performance and Internal Flow of Contra-Rotating Small-Sized Cooling Fan
7
作者 Toru Shigemitsu Keisuke Miyazaki +1 位作者 Katsuhiko Hirosawa Hiroaki Fukuda 《Open Journal of Fluid Dynamics》 2018年第2期181-194,共14页
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rot... High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter. 展开更多
关键词 COOLING FAN Small-Sized AXIAL FAN contra-rotating Rotors PERFORMANCE INTERNAL Flow
下载PDF
Interaction tonal noise generated by contra-rotating open rotors 被引量:1
8
作者 Wangjian SHU Congcong CHEN +2 位作者 Lin DU Xiang HE Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期134-147,共14页
Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain... Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain model is extended to predict CROR noise.It builds explicitly the relationship between harmonic loadings and corresponding tonal noise,by which the influential parameters to noise generation can be clearly understood.The real distribu-tions of steady and unsteady blade loadings are calculated by the Nonlinear Harmonic(NLH)method.In the present hybrid approach,both the CFD and acoustic modules are solved in the fre-quency domain.To assess the accuracy of the developed method,the loading noise of a CROR is calculated and compared against results by using the time-domain FW-H module of NUMECA.The predicted sound directivities by the two methods are in good agreements.The present acoustic model in the frequency domain is proven to be accurate and have high efficiency in far-field noise prediction and data processing.Furthermore,the characteristics of the CROR interaction tonal noise are analyzed and discussed. 展开更多
关键词 contra-rotating Open Rotors(CRORs) Interaction tonal noise Nonlinear Harmonic(NLH) Frequency domain Acoustic analogy
原文传递
Design of a two spool contra-rotating turbine for a turbo-fan engine 被引量:1
9
作者 Prathapanayaka Rajeevalochanam S.N.Agnimitra Sunkara +1 位作者 Seepana Venkata Ramana Murthy R.Senthil Kumaran 《Propulsion and Power Research》 SCIE 2020年第3期225-239,共15页
Contra-rotating turbines offer enhanced performance over their conventional corotating configurations.In addition,vaneless contra-rotating turbine stages offer lesser stage length along with improved performance.Contr... Contra-rotating turbines offer enhanced performance over their conventional corotating configurations.In addition,vaneless contra-rotating turbine stages offer lesser stage length along with improved performance.Contra-rotating turbines with a vaned LP stages offer a controlled work-split between the stages over a wider range of operating conditions by maintaining inlet swirl to the second rotor.The objective of the present work is to design an equivalent vaned contra-rotating turbine for an existing co-rotating configuration of a two-spool turbo fan engine.The contra-rotating turbine is designed by retaining the existing flow path and HP turbine,and redesigning the LP turbine for fixed radial distributions of inlet total temperature,pressure and swirl.A comparative study between performance of the co-rotating and contra-rotating turbines is carried out for different speeds.Cascade testing of the LP stator and rotor mean sections was carried out to validate the analysis.The LP stage of contra-rotating turbine exhibits a performance improvement by 2%points at design point,as per flow predictions.The reduced flow deflection in stator row is the primary reason for significant reduction in profile and secondary losses in contra-rotating turbine,which contributed to the performance improvement.A significant reduction of 23%in blade weight and 45% in LP stator vane count is obtained. 展开更多
关键词 contra-rotating turbine Computational fluid dynamics Vaned contra-rotating Two spool Unsteady CFD
原文传递
Investigation of the Unsteady Disturbance in Tip Region of a Contra-Rotating Compressor near Stall 被引量:3
10
作者 CHEN Weixiong WANG Yangang WANG Hao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第5期962-974,共13页
The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simul... The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly. 展开更多
关键词 contra-rotating axial COMPRESSOR blade PASSING frequency TIP leakage flow UNSTEADY DISTURBANCE source phase-locked RMS
原文传递
Experimental Investigation on the Development Process of Large-Scale Low-Speed Stall Disturbance in Contra-Rotating Compressor 被引量:4
11
作者 YUE Shaoyuan WANG Yan'gang +1 位作者 WEI Liguo WANG Hao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1282-1291,共10页
In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response... In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response pressure sensors.The array consists of thirty-one high-frequency response dynamic sensors coupled with two optical fiber sensors that were installed on the compressor casing in the direction of circumferential and chordwise of the upstream and downstream of the contra-rotating rotors.A significant hysteresis loop during the stall-recovery process of the contra-rotating compressor was captured successfully.The time series of unsteady signals when the compressor was working on the point of stall occurrence,the period of fully stall,and recovery stall were studied and discussed.Results show a large scale,and low-speed disturbance occurred abruptly at the leading-edge plane of the rear rotor and expands until it passes through both rotors.The single stall cell occupied a circumferential range of 135° and moved in the direction of the rear rotor with an 8.3%shaft speed.As the mass flow rate dropped,the stall cell speed decreases.During the stall recovery process,the rotational speed of disturbance suddenly increased from 7.5%to 18%and even increased to 47%just before the moment when flow recovered axisymmetric.Compared with the rear rotor,the front one dropped out unstable conditions earlier. 展开更多
关键词 contra-rotating ABRUPT large scale STALL
原文传递
Experimental investigation of a high aspect ratio,low speed contra-rotating fan stage with complex inflow distortion 被引量:3
12
作者 Chetan Mistry A.M.Pradeepn 《Propulsion and Power Research》 SCIE 2014年第2期68-81,共14页
This paper focuses on the response of a high aspect ratio,low speed contra-rotating fan with complex inflow distortion.The total pressure at the inlet is artificially distorted by means of two different sets of screen... This paper focuses on the response of a high aspect ratio,low speed contra-rotating fan with complex inflow distortion.The total pressure at the inlet is artificially distorted by means of two different sets of screens with different porosities to generate a hub-strong complex distortion and a tip-strong complex distortion.Detailed flow analyses were conducted for the design speed of rotor-1 in combination with off design speeds of rotor-2 both for the design and the peak pressure mass flow rates.In order to understand the extent of inlet distortion,the distortion sector was rotated circumferentially at intervals of 151 to cover the entire annulus.Detailed measurements of total pressure,static pressure,velocity components and flow angles were carried out at the inlet of the first rotor,between the two rotors and at the exit of the second rotor using three seven hole probes.The study reveals a few interesting aspects on the effect of complex inflow distortion on the flow behavior of a contra-rotating stage.The presence of a low porosity screen reduces the magnitude of axial velocity and generates higher spread of distortion near the localized region of placement of the screen.The hub-strong complex distortion has a greater effect of presence of this low porosity screen in both circumferential and radial directions.This leads to higher stagnation pressure variation at the inlet.On the other hand,for the tip-strong complex distortion case,the extent of distortion is observed to be higher in the circumferential direction towards the casing rather than radial.The localized improvement in the flow(in tip-strong inflow distortion)near the tip region improves the performance both in terms of pressure rise and efficiency of stage compared to hub–strong complex distortion. 展开更多
关键词 Complex inflow distortion Hub-strong complex distortion Tip-strong complex distortion contra-rotating fan
原文传递
An integral panel method for the hydrodynamic analysis of hybrid contra-rotating shaft pod propulsors
13
作者 Rui Wang Ying Xiong 《Journal of Ocean Engineering and Science》 SCIE 2018年第3期175-185,共11页
The present work is devoted to developing an efficient method for the analysis and design of hybrid contra-rotating shaft pod(HCRSP)propulsors.The geometry of contra-rotating propulsor(CRP)was then analyzed,and a stea... The present work is devoted to developing an efficient method for the analysis and design of hybrid contra-rotating shaft pod(HCRSP)propulsors.The geometry of contra-rotating propulsor(CRP)was then analyzed,and a steady integral panel method that treats the forward and aft propellers as a whole part is presented.During the study,the control equation of the steady integral panel method for CRP is derived in detail.From the experience of developing an integral panel method for CRP,the characteristics of panel singularity strength in HCRSP propulsor was analyzed.Based on this analysis,an integral panel method for HCRSP propulsor is developed and the wake model discussed.Then,the method is applied in the performance analysis of HCRSP propulsor.Comparison between experimental data and numerical results shows that the steady integral panel method has good accuracy in terms of open water performance.Regarding the latter,the error source in the steady integral panel method is discussed. 展开更多
关键词 Hybrid contra-rotating shaft pod propulsor Surface panel method Integral calculation model Wake model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部