The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-Esingle-sta...The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-Esingle-stage high-pressure turbine. The hot-streak effect based on real stator and combustor counts was approximately evaluated by the contraction/dilatation method on the interface. The unsteady attenuation and migration process of hot-streaks in the turbine passage were well captured. The general performance parameters for different circumferential positions of hot-streaks were relatively consistent. Then, the influences of hot-streaks on blade surface temperature were investigated by comparing results under hot-streak and uniform inflow conditions. Unsteady simulations with combined inlet hot-streak and swirling flow show that the core of a hot-streak migrates to the tip under the influence of a positive swirl, while the phenomenon is just opposite with a negative swirl. Therefore, the heat transfer environment of rotor blades shows great differences with different directions of inlet swirl.展开更多
基金supported by the AECC Shenyang Engine Research Institute of China
文摘The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-Esingle-stage high-pressure turbine. The hot-streak effect based on real stator and combustor counts was approximately evaluated by the contraction/dilatation method on the interface. The unsteady attenuation and migration process of hot-streaks in the turbine passage were well captured. The general performance parameters for different circumferential positions of hot-streaks were relatively consistent. Then, the influences of hot-streaks on blade surface temperature were investigated by comparing results under hot-streak and uniform inflow conditions. Unsteady simulations with combined inlet hot-streak and swirling flow show that the core of a hot-streak migrates to the tip under the influence of a positive swirl, while the phenomenon is just opposite with a negative swirl. Therefore, the heat transfer environment of rotor blades shows great differences with different directions of inlet swirl.