To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte...To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.展开更多
The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,te...The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.展开更多
基金support provided by the National Natural Science Foundation of China(Grant No.52362055)the Science and Technology Plan Project of Guangxi Zhuang Autonomous Region(Grant No.2021AC19334)Guangxi Science and Technology Major Program(Grant No.AA23062053).
文摘To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.
基金This work was supported in part by the National Natural Science Foundation of China(No.62373380).
文摘The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.