With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accura...With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accuracy.There-fore,this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation.First,the distribution network system topology is decoupled into single-branch networks.A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment,and its matrix reasoning algorithm is executed to obtain a preliminary set of location results.Finally,the Bayesian estimation and contradiction principle are applied to verify and correct the ini-tial results to obtain the final location results.Simulation results based on the IEEE 33-node system validate the feasi-bility and effectiveness of the proposed method.展开更多
基金funded by grants from the National Natural Science Foundation of China(61703345)the Chunhui Project Foundation of the Education Department of China(Z201980)the Open Research Subject of Key Laboratory of Fluid and Power Machinery(Xihua University),Ministry of Education(szjj2019-27).
文摘With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accuracy.There-fore,this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation.First,the distribution network system topology is decoupled into single-branch networks.A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment,and its matrix reasoning algorithm is executed to obtain a preliminary set of location results.Finally,the Bayesian estimation and contradiction principle are applied to verify and correct the ini-tial results to obtain the final location results.Simulation results based on the IEEE 33-node system validate the feasi-bility and effectiveness of the proposed method.