To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehi...In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehicles;moreover,lane contraflow can be adopted to meet these surge traffic demands.However,lane contraflow that provides more roads for rescue vehicles reduces the traffic supply in the evacuation direction.It is unclear how to control the number of contraflow roads used by rescue vehicles to coordinate evacuation and rescue traffic operations.Here,we adjust the critical rescue traffic volume of reversing the normal road traffic direction to control rescue contraflow.Additionally,we propose a multiobjective mixed integer linear programming formulation for evacuation and rescue traffic optimization.Additionally,considering that the upper limit of the critical rescue traffic volume is unknown and that the proposed formulation includes multiple objectives and multi-priority vehicle classes,a three-stage solving algorithm is developed.Next,a large-scale evacuation and rescue traffic optimization result dataset is obtained for the Nguyen–Dupuis road network,and the impact of different rescue contraflow control plans on evacuation and rescue traffic is studied based on data-driven sta-tistical analysis.The results show that by adjusting the optimal rescue traffic route,the critical rescue traffic volume for reversing the normal road traffic direction can reduce the interference of rescue traffic to evacuation traffic operation performance without reducing rescue traffic operation performance,and can be used to coor-dinate evacuation and rescue traffic operation under rescue contraflow.展开更多
The optimization models and algorithms with their implementations on flow over time problems have been an emerging field of research because of largely increasing human-created and natural disasters worldwide.For an o...The optimization models and algorithms with their implementations on flow over time problems have been an emerging field of research because of largely increasing human-created and natural disasters worldwide.For an optimal use of transportation network to shift affected people and normalize the disastrous situation as quickly and efficiently as possible,contraflow configuration is one of the highly applicable operations research(OR)models.It increases the outbound road capacities by reversing the direction of arcs towards the safe destinations that not only minimize the congestion and increase the flow but also decrease the evacuation time significantly.In this paper,we sketch the state of quickest flow solutions and solve the quickest contraflow problem with constant transit times on arcs proving that the problem can be solved in strongly polynomial time O(nm^2(long n)~2)where n and m are number of nodes and number of arcs,respectively in the network.This contraflow solution has the same computational time bound as that of the best min-cost flow solution.Moreover,we also introduce the contraflow approach with load dependent transit times on arcs and present an efficient algorithm to solve the quickest contraflow problem approximately.Supporting the claim,our computational experiments on Kathmandu road network and on randomly generated instances perform very well matching the theoretical results.For a sufficiently large number of evacuees,about double flow can be shifted with the same evacuation time and about half time is sufficient to push the given flow value with contraflow reconfiguration.展开更多
Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pse...From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pseudoscience of T.D.Lysenko school was deeply exposed and it was pointed put that its perdition was inevitable.At last analysis was made on the cause of occurrence of T.D.Lysenko’s doctrine and historical lessons to be drawn.展开更多
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金supported by the National Natural Science Foundation of China(no.72242102,72271021)the humanities and Social Sciences Fund of Ministry of Education of China(no.23YJC630124)the Henan Provincial Science and Technology Research Project of China(no.232102320021).
文摘In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehicles;moreover,lane contraflow can be adopted to meet these surge traffic demands.However,lane contraflow that provides more roads for rescue vehicles reduces the traffic supply in the evacuation direction.It is unclear how to control the number of contraflow roads used by rescue vehicles to coordinate evacuation and rescue traffic operations.Here,we adjust the critical rescue traffic volume of reversing the normal road traffic direction to control rescue contraflow.Additionally,we propose a multiobjective mixed integer linear programming formulation for evacuation and rescue traffic optimization.Additionally,considering that the upper limit of the critical rescue traffic volume is unknown and that the proposed formulation includes multiple objectives and multi-priority vehicle classes,a three-stage solving algorithm is developed.Next,a large-scale evacuation and rescue traffic optimization result dataset is obtained for the Nguyen–Dupuis road network,and the impact of different rescue contraflow control plans on evacuation and rescue traffic is studied based on data-driven sta-tistical analysis.The results show that by adjusting the optimal rescue traffic route,the critical rescue traffic volume for reversing the normal road traffic direction can reduce the interference of rescue traffic to evacuation traffic operation performance without reducing rescue traffic operation performance,and can be used to coor-dinate evacuation and rescue traffic operation under rescue contraflow.
基金supported by Deutscher Akademischer Austauschdienst (German Academic Exchange Service) Partnership Program (with University of Kaiserslautern, Germany and Mindanao State University, Iligan Institute of Technology, Iligan, Philippines)Av H Research Group Linkage Program (with Technische Universitt Bergakademie Freiberg) in Graph Theory and Optimization at Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepalsupported by the Av H Foundation for the Georg Forster Research Fellowship for post doctoral researchers at Technische Universitt Bergakademie Freiberg Germany
文摘The optimization models and algorithms with their implementations on flow over time problems have been an emerging field of research because of largely increasing human-created and natural disasters worldwide.For an optimal use of transportation network to shift affected people and normalize the disastrous situation as quickly and efficiently as possible,contraflow configuration is one of the highly applicable operations research(OR)models.It increases the outbound road capacities by reversing the direction of arcs towards the safe destinations that not only minimize the congestion and increase the flow but also decrease the evacuation time significantly.In this paper,we sketch the state of quickest flow solutions and solve the quickest contraflow problem with constant transit times on arcs proving that the problem can be solved in strongly polynomial time O(nm^2(long n)~2)where n and m are number of nodes and number of arcs,respectively in the network.This contraflow solution has the same computational time bound as that of the best min-cost flow solution.Moreover,we also introduce the contraflow approach with load dependent transit times on arcs and present an efficient algorithm to solve the quickest contraflow problem approximately.Supporting the claim,our computational experiments on Kathmandu road network and on randomly generated instances perform very well matching the theoretical results.For a sufficiently large number of evacuees,about double flow can be shifted with the same evacuation time and about half time is sufficient to push the given flow value with contraflow reconfiguration.
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。
文摘From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pseudoscience of T.D.Lysenko school was deeply exposed and it was pointed put that its perdition was inevitable.At last analysis was made on the cause of occurrence of T.D.Lysenko’s doctrine and historical lessons to be drawn.