The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev...The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.展开更多
Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimizatio...Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.展开更多
To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation...To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.展开更多
A problem of the air pollution control in China is getting to know a regional contribution rate of internal and external source of PM2.5. In this paper,Set Pair Analysis( SPA) method is proposed to calculate the con...A problem of the air pollution control in China is getting to know a regional contribution rate of internal and external source of PM2.5. In this paper,Set Pair Analysis( SPA) method is proposed to calculate the contribution rate of PM2.5in Dongguan City. Due to geographic,meteorological factors and the low concentration of air pollutants in Qingxi area,the PM2.5in this place is mainly contributed by the regional transport of air pollutants from other inside areas of Dongguan,and less affected by the outside of Dongguan. So the concentration of PM2.5in Qingxi area can reflect the Dongguan's basic background concentration of PM2.5. On the basis of the basic background concentration,firstly the concentration of each pollutant components is divided into the internal part and the mixed part. Secondly using the source apportionment samples of five monitoring sites in Dongguan we can respectively construct a sample set A and an evaluation set B. Thirdly the SPA is operated onto the mixed part in terms of set B.At last the connection degree between the concentration of each pollutant components and external source and internal source will be calculated,that is the contribution rate. The research reveals that the contribution rate of internal source and external source of PM2.5in Dongguan City is 83%and 17% respectively,which roughly met expectations. This method is simple and effective and it can provide a reference for the government taking reduction measures to control PM2.5pollutants emission.展开更多
It is the rational and exact computation of the safety economy contribution rate that has the far-reaching realistic meaning to the improvement of society cognition to safety and the investment to the nation safety an...It is the rational and exact computation of the safety economy contribution rate that has the far-reaching realistic meaning to the improvement of society cognition to safety and the investment to the nation safety and the national macro-safety decision-makings. The accurate function between safety inputs and outputs was obtained through a founded econometric model. Then the forecasted safety economy contribution rate is 3.01% and the forecasted ratio between safety inputs and outputs is 1:1.81 in China in 2005. And the model accords with the practice of China and the results are sarisfying.展开更多
Agricultural informationization is the objective demand for transforming the traditional agriculture and promoting the development of agricultural modernization. Using the statistical data of the gross agricultural ou...Agricultural informationization is the objective demand for transforming the traditional agriculture and promoting the development of agricultural modernization. Using the statistical data of the gross agricultural output value of Hubei Province in 2005-2014,based on the C-D production function,it calculated the average contribution rate(2. 48%) of agricultural informationization to the growth of agricultural economy in Hubei Province,indicating that agricultural informationization can promote growth of agricultural economy. This is basically consistent with previous findings. In addition,investment in agricultural informationization and broadband access rate also influenced the growth of agricultural economy in Hubei Province. Therefore,government should further improve the infrastructure of agricultural informationization,strengthen training of farmers’ information skills,establish auxiliary mechanism for achievement feedback of information-based agricultural production,increase the contribution rate of informationization to agricultural operation and management,promote the contribution of informationization to the growth of agricultural economy,so as to increase agricultural income of farmers.展开更多
A decline in atmospheric oxygen concentration is projected in the 21st century given the background of global warming.The Qinghai-Tibetan Plateau is located at a high altitude,and thus,it faces a hypoxia challenge;how...A decline in atmospheric oxygen concentration is projected in the 21st century given the background of global warming.The Qinghai-Tibetan Plateau is located at a high altitude,and thus,it faces a hypoxia challenge;however,knowledge of the factors contributing to its atmospheric oxygen concentration is still lacking.Here,we conducted joint observations of ecosystem oxygen production and carbon sinks and near-surface atmospheric oxygen concentrations on the Qinghai-Tibetan Plateau and meteorological elements at Beijing Fangshan Station.Using seasonal differences and statistical methods,we calculated the relative contribution rates of vegetation to changes in atmospheric oxygen concentration.Our results indicate that solar radiation,atmospheric humidity,and ecosystem oxygen consumption and production have a significant impact on the atmospheric oxygen concentration,and the impact shows temporal and spatial differences.Vegetation significantly impacts the oxygen concentration,with a contribution rate of 16.7%–24.5%,which is underestimated in existing research.Our findings provide important insights into the factors that influence atmospheric oxygen concentration and highlight the contribution of vegetation.To better understand the oxygen dynamics of the Qinghai-Tibetan Plateau,we recommend further field observations of soil respiration and vegetation photosynthesis to clarify the contributions of carbon storage,carbon sinks and other factors to the near-surface atmospheric oxygen concentration.展开更多
Many studies have shown that energy consumption plays an important role in economic growth.The paper researches the influence of energy consumption on economic growth in China’s Yangtze River Economic Zone.The paper ...Many studies have shown that energy consumption plays an important role in economic growth.The paper researches the influence of energy consumption on economic growth in China’s Yangtze River Economic Zone.The paper divides the energy of Yangtze River Economic Zone into the coal,the oil,the natural gas and the electricity and explores the influences of coal consumption,gas consumption,natural gas consumption and electricity consumption on economic growth quantitatively using an extended production function model.The paper mainly uses two methods.The first method is the output elasticity analysis.The paper calculates the four energy consumption’s output elasticity to economic growth to compares the influences of energy consumption in terms of out output elasticity.The second method is the contribution rate analysis.The paper calculates the contribution rates of four energy consumption to economic growth to compare the influences of four energy consumption on economic growth in terms of contribution rate.The paper makes an empirical analysis on the influence of energy consumption on economic growth in China’s Yangtze River Economic Zone.Analysis results show that oil consumption has the greatest influence on economic growth in China’s Yangtze River Economic Zone,in terms of both output elasticity and contribution rate,followed by natural gas consumption,electricity consumption and coal consumption.展开更多
The contribution of the quark loop to the gluon damping rate at zero momentum is calculated using the effective perturbative expansion technique developed by Braaten and Pisarski. It is shown that in the temperature r...The contribution of the quark loop to the gluon damping rate at zero momentum is calculated using the effective perturbative expansion technique developed by Braaten and Pisarski. It is shown that in the temperature range accessible in the present heavy-ion experiments, the contribution of the quark loop can not be ignored. The numerical results show that the quark loop provides ~n apparent contribution to the gluon damping rate at temperatures of experimental interest.展开更多
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio...The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.展开更多
Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of ar...Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of aridity index ( AI ) in the growing season of major grain producing areas in Tibet were studied by using climate tendency rate, Mann-Kendal test, Morlet wavelet analysis, GIS hybrid interpolation method, Pearson correlation coefficient, contribution rate analysis and other methods. The results showed that the average AI in the main grain producing areas of Tibet was 1.7, which belonged to the semi-arid area, and the overall trend was decreasing (humidifying) (-0.036/10 a). The linear decreasing trend was different in different regions, and the area around Lhatse County was the most significant (-0.26/10 a). AI had no obvious abrupt change, and had long- and medium-term fluctuation characteristics of 24 years, 6 years. The spatial distribution was uneven, and had the characteristics of ‘shrinking arid area and expanding humid area . The contribution rates of the main climate influencing factors of AI varied in different regions. In general, the contribution rates after quantification was as follows: precipitation (34.9%)>relative humidity (28.4%)>sunshine (19.9%)>maximum temperature (12.4%).展开更多
Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been mad...Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been made to explore their distribution patterns and ecological mechanisms that determine these patterns for more than 100 years, and quite a number of geographical and ecophysiological models have been developed to correlate treeline altitude with latitude or a latitude related temperature. However,on a global scale, all of these models have great difficulties to accurately predict treeline elevation due to the extreme diversity of treeline site conditions.One of the major reasons is that "mass elevation effect"(MEE) has not been quantified globally and related with global treeline elevations although it has been observed and its effect on treeline elevations in the Eurasian continent and Northern Hemisphere recognized. In this study, we collected and compiled a total of 594 treeline sites all over the world from literatures, and explored how MEE affects globaltreeline elevation by developing a ternary linear regression model with intra-mountain base elevation(IMBE, as a proxy of MEE), latitude and continentality as independent variables. The results indicated that IMBE, latitude and continentality together could explain 92% of global treeline elevation variability, and that IMBE contributes the most(52.2%), latitude the second(40%) and continentality the least(7.8%) to the altitudinal distribution of global treelines. In the Northern Hemisphere, the three factors' contributions amount to 50.4%, 45.9% and 3.7% respectively; in the south hemisphere, their contributions are 38.3%, 53%, and 8.7%, respectively. This indicates that MEE, virtually the heating effect of macro-landforms, is actually the most significant factor for the altitudinal distribution of treelines across the globe, and that latitude is relatively more significant for treeline elevation in the Southern Hemisphere probably due to fewer macro-landforms there.展开更多
We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner ...We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.展开更多
The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan are...The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan area situated in major grain producing locations in the central China.Taking the Zhengzhou metropolitan area(ZZMA)as a case study,we developed an inverse S-shape model to characterize the spatial distribution of urban land density,and constructed an urban expansion core index,urban expansion intensity index,and urban compactness index to quantify the spatial structure change that has taken place from 1978 to 2017 during the process of urban expansion.Moreover,cropland contribution rate(CR)was constructed to evaluate the impacts of urban expansion on croplands.We uncovered four key findings.First,over the past 40 yr,the ZZMA has experienced dramatic expansion,and the central city of Zhengzhou expanded faster than other cities.The gravity centers of urban expansion of surrounding cities were moving toward to Zhengzhou City.Second,the urban land density decreased with the distance from the city center to the outskirts.As the only large city,Zhengzhou has experienced the fastest and most compact centralized urban expansion,especially after 2000,while other medium-and small-sized cities have experienced low-intensity decentralized expansion.Third,the urban core has been gradually expanding outward.From 1978 to 2017,the hot-zone of urban growth has moved progressively with the acceleration of urbanization.All cities except Jiaozuo had a single peak in different periods.Forth,the cities in national core grain-producing areas has higher cropland contribution rates and lower urban expansion areas,which was closely related to cropland protection.Further analysis showed that large city was relatively better positioned than smaller cities in the efficiency of their urban infrastructure and the effectiveness of wealth creation efficiency in the urbanized area could be tested in all cities,and the policy factor seemed to play an important role in the urban expansion process.展开更多
Based on the building height and density data on a 100-m resolution,hourly 2-m temperature and humidity data at83 automatic weather stations,and gridded local climate zone(LCZ)data on a 120-m resolution in urban Beiji...Based on the building height and density data on a 100-m resolution,hourly 2-m temperature and humidity data at83 automatic weather stations,and gridded local climate zone(LCZ)data on a 120-m resolution in urban Beijing in2020,this study first employs the semivariogram combined with building parameters to calculate spatial correlations and has identified an LCZ grid resolution of 500 m suitable for best usage of the available observation data.Then,how the spatially heterogeneous LCZs affect and contribute to the canopy urban heat island intensity(UHII)and urban dry island intensity(UDII)are quantitatively investigated.It is found that UHII is high in winter and low in summer with a unimodal diurnal variation while UDI is low in winter but high in summer with a bimodal diurnal variation.The LCZ with compact mid-rise(open high-rise)buildings exhibits the highest UHII(UDII),followed by the compact high-rise(compact low-rise),while the LCZ of scattered trees presents both the lowest UHII and the lowest UDII.The most significant difference in the UHII(UDII)among the nine LCZ types in the urban area of Beijing is2.62℃(1.1 g kg^(-1)).Area-weighted averaging analysis reveals that the open mid-rise LCZ is the most significant contributor to the UHII(UDII),immediately followed by compact mid-rise(open low-rise),with the least contribution from bare rock or paved(scattered trees).The results also indicate that beyond the intrinsic physical properties of the LCZs of a city,their area proportions cannot be overlooked in evaluating their impact on the UHI and UDI.These quantitatively findings could help urban planners to create a livable urban climate and environment by adjusting the relevant land use.展开更多
The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchan...The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchange values based on comparable price by calculating the carbon sequestration values and the GHGs emission values of marshes and paddy fields respectively in four periods of 1982,1995,2000 and 2005. It is noted that the GHGs emission values are always negative. In this study,the marshes areas decreased from 1438977.0 to 775,132.2ha and the paddy fields areas increased from 417195.8 to 934205.0ha. The values of GHGs exchange of marshes varied from 135877.156×106 to 136882.534×106 yuan(RMB) and those of paddy fields varied from 1006.256×106 to 2767.645×106 yuan. The GHGs exchange values of marshes decreased from 1982 to 2005 on the whole,reversely,those of paddy fields increased,but those in 2005 were lower than those in 2000. In different periods,the GHGs exchange values were always higher in marshes than in paddy fields. The contribution rate of GHGs exchange values per unit area of marshes was also very high in different periods,and the maximum was up to 98.35% in 2005. As far as the whole wetland ecosystem(including marshes and paddy fields) ,assuming a linear change in GHGs exchange values,it represented a cumulative increase of 20926.757×106 yuan from 1982 to 2005. By adding GHGs exchange values increased during those four periods,we obtained a cumulative net increase values of GHGs exchange of wetland ecosystem of 18200.860×106 yuan. The results will be useful for understanding the indirect services provided by marshes and paddy fields.展开更多
Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The p...Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The present study quantitatively evaluated the effects of climate change and land use/cover change(LUCC)on the lake volume of the Qinghai Lake in China from 1958 to 2018,which is crucial for water resources management in the Qinghai Lake Basin.To explore the effects of climate change and LUCC on the Qinghai Lake volume,we analyzed the lake level observation data and multi-period land use/land cover(LULC)data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018.The lake volume decreased by 105.40×10^(8) m^(3) from 1958 to 2004,with the rate of 2.24×10^(8) m^(3)/a,whereas it increased by 74.02×10^(8) m^(3) from 2004 to 2018,with the rate of 4.66×10^(8) m^(3)/a.Further,the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid.From 1958 to 2018,the increase in precipitation and the decrease in evaporation controlled the change of the lake volume,which were the main climatic factors affecting the lake volume change.From 1977 to 2018,the measured water yield showed an"increase-decrease-increase"fluctuation in the Qinghai Lake Basin.The effects of climate change and LUCC on the measured water yield were obviously different.From 1977 to 2018,the contribution rate of LUCC was -0.76% and that of climate change was 100.76%;the corresponding rates were 8.57% and 91.43% from 1977 to 2004,respectively,and -4.25% and 104.25% from 2004 to 2018,respectively.Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC,as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP.This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.展开更多
Waste solid propylene oxide sludge (POS) and fly ash were used as main raw material to prepare propylene oxide sludge aggregate (POSA) under the condition of autoclaved (180 ℃,1.0 MPa) curing. Three different t...Waste solid propylene oxide sludge (POS) and fly ash were used as main raw material to prepare propylene oxide sludge aggregate (POSA) under the condition of autoclaved (180 ℃,1.0 MPa) curing. Three different test methods namely cylinder compressive strength (CCS), individual aggregate compressive strength (IACS) and strength contribution rate (SCR) proposed were used to characterize the mechanical properties of the autoclaved POSA. POS shell-aggregate with SCR of 94% were prepared under the hydrothermal synthesis and autoclaved curing. The experimental results indicate that CCS and IACS have good consistency in characterizing mechanical properties of POSA. It is suggested that SCR not only can characterize the strength of POSA core, but also can reflect the effect of shell on the performance of POSA. By means of least square method, relationships between CCS and IACS, CCS and SCR, IACS and SCR were deduced.展开更多
This paper presents a method combining single-indicator comprehensive evaluation and influence factor identification to measure groundwater quality. This method not only reflects groundwater quality classification wit...This paper presents a method combining single-indicator comprehensive evaluation and influence factor identification to measure groundwater quality. This method not only reflects groundwater quality classification with clear physical significance, but also divides the possibilities of man-made pollution in regional groundwater. The paper selects 6 063 representative groundwater wells in the North China Plain to evaluate 49 groundwater inorganic and organic index and comes to a conclusion: Controlled by geological environment and hydrogeological conditions, the groundwater quality in the North China Plain deteriorates from the bottom of maintain to coastal area, with Class I to III groundwater decreasing from 49% to 3.9% while Class V groundwater increasing from 21% to 86.9%; the quality of deep groundwater is better than that of shallow groundwater; the contribution rate of manganese, total hardness, total dissolved solids and iodide in shallow groundwater to over-III type water exceeds 50%; the contribution rate of nitrite in pollution index reaches 20%; while heavy metal and organic indexes have limited impact on regional groundwater quality. The North China Plain is an important economic area in China. Over decades, it has witnessed intense human activities, and water resource quantity demanded has been far greater than quantity supplied. Due to scarce surface water resource, groundwater becomes the pillar supporting regional economic development. This has led to increasing groundwater exploitation and development. According to statistics, the exploitation degree of shallow groundwater reaches 105% in the North China Plain and 118% in the Hebei Plain; the exploitation degree of deep groundwater reaches 143% in the North China Plain and 163% in the Hebei Plain. The serious over-exploitation of groundwater brings various geological environmental problems, with the worsening of groundwater quality being a typical one. Besides impact brought by human activities, the poor quality of natural water in the North China Plain is also an important factor. Therefore, to understand the current regional groundwater quality situation and to master influence factors and influence degree can provide reliable scientific protection for regional economic development.展开更多
基金supported by the National Key Research and Development Project(2018YFB1700802)the National Natural Science Foundation of China(72071206)the Science and Technology Innovation Plan of Hunan Province(2020RC4046).
文摘The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.
基金supported by the National Natural Science Foundation of China(71690233)the Scientific Research Foundation of National University of Defense Technology(ZK19-16)the PLA military graduate student funding project.
文摘Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.
基金The National Social Science Foundation Military Science Project(No.16GJ003-068).
文摘To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.
基金Supported by National Natural Science Foundation of China(71171089)Research for PM_(2.5) Contamination Characteristics and Prevention and Control Countermeasures in Dongguan City(Dongcaidan[2013]222)
文摘A problem of the air pollution control in China is getting to know a regional contribution rate of internal and external source of PM2.5. In this paper,Set Pair Analysis( SPA) method is proposed to calculate the contribution rate of PM2.5in Dongguan City. Due to geographic,meteorological factors and the low concentration of air pollutants in Qingxi area,the PM2.5in this place is mainly contributed by the regional transport of air pollutants from other inside areas of Dongguan,and less affected by the outside of Dongguan. So the concentration of PM2.5in Qingxi area can reflect the Dongguan's basic background concentration of PM2.5. On the basis of the basic background concentration,firstly the concentration of each pollutant components is divided into the internal part and the mixed part. Secondly using the source apportionment samples of five monitoring sites in Dongguan we can respectively construct a sample set A and an evaluation set B. Thirdly the SPA is operated onto the mixed part in terms of set B.At last the connection degree between the concentration of each pollutant components and external source and internal source will be calculated,that is the contribution rate. The research reveals that the contribution rate of internal source and external source of PM2.5in Dongguan City is 83%and 17% respectively,which roughly met expectations. This method is simple and effective and it can provide a reference for the government taking reduction measures to control PM2.5pollutants emission.
基金Supported by the National Natural Science Foundation of China(50274060) State Administration of Work Safety(03-103)
文摘It is the rational and exact computation of the safety economy contribution rate that has the far-reaching realistic meaning to the improvement of society cognition to safety and the investment to the nation safety and the national macro-safety decision-makings. The accurate function between safety inputs and outputs was obtained through a founded econometric model. Then the forecasted safety economy contribution rate is 3.01% and the forecasted ratio between safety inputs and outputs is 1:1.81 in China in 2005. And the model accords with the practice of China and the results are sarisfying.
基金Supported by Soft Science Project of Wuhan City in Hubei Province(201604-0306010178)
文摘Agricultural informationization is the objective demand for transforming the traditional agriculture and promoting the development of agricultural modernization. Using the statistical data of the gross agricultural output value of Hubei Province in 2005-2014,based on the C-D production function,it calculated the average contribution rate(2. 48%) of agricultural informationization to the growth of agricultural economy in Hubei Province,indicating that agricultural informationization can promote growth of agricultural economy. This is basically consistent with previous findings. In addition,investment in agricultural informationization and broadband access rate also influenced the growth of agricultural economy in Hubei Province. Therefore,government should further improve the infrastructure of agricultural informationization,strengthen training of farmers’ information skills,establish auxiliary mechanism for achievement feedback of information-based agricultural production,increase the contribution rate of informationization to agricultural operation and management,promote the contribution of informationization to the growth of agricultural economy,so as to increase agricultural income of farmers.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0606&2019QZKK0906)。
文摘A decline in atmospheric oxygen concentration is projected in the 21st century given the background of global warming.The Qinghai-Tibetan Plateau is located at a high altitude,and thus,it faces a hypoxia challenge;however,knowledge of the factors contributing to its atmospheric oxygen concentration is still lacking.Here,we conducted joint observations of ecosystem oxygen production and carbon sinks and near-surface atmospheric oxygen concentrations on the Qinghai-Tibetan Plateau and meteorological elements at Beijing Fangshan Station.Using seasonal differences and statistical methods,we calculated the relative contribution rates of vegetation to changes in atmospheric oxygen concentration.Our results indicate that solar radiation,atmospheric humidity,and ecosystem oxygen consumption and production have a significant impact on the atmospheric oxygen concentration,and the impact shows temporal and spatial differences.Vegetation significantly impacts the oxygen concentration,with a contribution rate of 16.7%–24.5%,which is underestimated in existing research.Our findings provide important insights into the factors that influence atmospheric oxygen concentration and highlight the contribution of vegetation.To better understand the oxygen dynamics of the Qinghai-Tibetan Plateau,we recommend further field observations of soil respiration and vegetation photosynthesis to clarify the contributions of carbon storage,carbon sinks and other factors to the near-surface atmospheric oxygen concentration.
基金Supported by the National Natural Science Foundation of China(11401418)。
文摘Many studies have shown that energy consumption plays an important role in economic growth.The paper researches the influence of energy consumption on economic growth in China’s Yangtze River Economic Zone.The paper divides the energy of Yangtze River Economic Zone into the coal,the oil,the natural gas and the electricity and explores the influences of coal consumption,gas consumption,natural gas consumption and electricity consumption on economic growth quantitatively using an extended production function model.The paper mainly uses two methods.The first method is the output elasticity analysis.The paper calculates the four energy consumption’s output elasticity to economic growth to compares the influences of energy consumption in terms of out output elasticity.The second method is the contribution rate analysis.The paper calculates the contribution rates of four energy consumption to economic growth to compare the influences of four energy consumption on economic growth in terms of contribution rate.The paper makes an empirical analysis on the influence of energy consumption on economic growth in China’s Yangtze River Economic Zone.Analysis results show that oil consumption has the greatest influence on economic growth in China’s Yangtze River Economic Zone,in terms of both output elasticity and contribution rate,followed by natural gas consumption,electricity consumption and coal consumption.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11465021 and 11065010
文摘The contribution of the quark loop to the gluon damping rate at zero momentum is calculated using the effective perturbative expansion technique developed by Braaten and Pisarski. It is shown that in the temperature range accessible in the present heavy-ion experiments, the contribution of the quark loop can not be ignored. The numerical results show that the quark loop provides ~n apparent contribution to the gluon damping rate at temperatures of experimental interest.
基金supported by the National Natural Science Foundation of China (42377472, 42174055)the Jiangxi Provincial Social Science "Fourteenth Five-Year Plan" (2024) Fund Project (24GL45)+1 种基金the Research Center of Resource and Environment Economics (20RGL01)the Provincial Finance Project of Jiangxi Academy of Sciences-Young Talent Cultivation Program (2023YSBG50010)
文摘The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.
基金Supported by Natural Science Foundation of Tibet Autonomous Region(XZ202001ZR0082G)National Key Research and Development Program of China(2020YFA0608203)Key Research and Development of Science and Technology Program of Tibet Autonomous Region(CGZH2024000002)。
文摘Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of aridity index ( AI ) in the growing season of major grain producing areas in Tibet were studied by using climate tendency rate, Mann-Kendal test, Morlet wavelet analysis, GIS hybrid interpolation method, Pearson correlation coefficient, contribution rate analysis and other methods. The results showed that the average AI in the main grain producing areas of Tibet was 1.7, which belonged to the semi-arid area, and the overall trend was decreasing (humidifying) (-0.036/10 a). The linear decreasing trend was different in different regions, and the area around Lhatse County was the most significant (-0.26/10 a). AI had no obvious abrupt change, and had long- and medium-term fluctuation characteristics of 24 years, 6 years. The spatial distribution was uneven, and had the characteristics of ‘shrinking arid area and expanding humid area . The contribution rates of the main climate influencing factors of AI varied in different regions. In general, the contribution rates after quantification was as follows: precipitation (34.9%)>relative humidity (28.4%)>sunshine (19.9%)>maximum temperature (12.4%).
基金supported by the National Natural Science Foundation of China (Grant Nos. 41030528 and No. 40971064)
文摘Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been made to explore their distribution patterns and ecological mechanisms that determine these patterns for more than 100 years, and quite a number of geographical and ecophysiological models have been developed to correlate treeline altitude with latitude or a latitude related temperature. However,on a global scale, all of these models have great difficulties to accurately predict treeline elevation due to the extreme diversity of treeline site conditions.One of the major reasons is that "mass elevation effect"(MEE) has not been quantified globally and related with global treeline elevations although it has been observed and its effect on treeline elevations in the Eurasian continent and Northern Hemisphere recognized. In this study, we collected and compiled a total of 594 treeline sites all over the world from literatures, and explored how MEE affects globaltreeline elevation by developing a ternary linear regression model with intra-mountain base elevation(IMBE, as a proxy of MEE), latitude and continentality as independent variables. The results indicated that IMBE, latitude and continentality together could explain 92% of global treeline elevation variability, and that IMBE contributes the most(52.2%), latitude the second(40%) and continentality the least(7.8%) to the altitudinal distribution of global treelines. In the Northern Hemisphere, the three factors' contributions amount to 50.4%, 45.9% and 3.7% respectively; in the south hemisphere, their contributions are 38.3%, 53%, and 8.7%, respectively. This indicates that MEE, virtually the heating effect of macro-landforms, is actually the most significant factor for the altitudinal distribution of treelines across the globe, and that latitude is relatively more significant for treeline elevation in the Southern Hemisphere probably due to fewer macro-landforms there.
基金Funded by the"863"National High-tech Research and Development Program of China(No.2012AA06A112)
文摘We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.
基金Under the auspices of National Natural Science Foundation of China(No.41971274)the Innovation Research Team of Henan Provincial University(No.2021-CXTD-08,2022-CXTD-02)the Scientific and Technological Innovation Team of Universities in Henan Province(No.22IRTSTHN008)。
文摘The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan area situated in major grain producing locations in the central China.Taking the Zhengzhou metropolitan area(ZZMA)as a case study,we developed an inverse S-shape model to characterize the spatial distribution of urban land density,and constructed an urban expansion core index,urban expansion intensity index,and urban compactness index to quantify the spatial structure change that has taken place from 1978 to 2017 during the process of urban expansion.Moreover,cropland contribution rate(CR)was constructed to evaluate the impacts of urban expansion on croplands.We uncovered four key findings.First,over the past 40 yr,the ZZMA has experienced dramatic expansion,and the central city of Zhengzhou expanded faster than other cities.The gravity centers of urban expansion of surrounding cities were moving toward to Zhengzhou City.Second,the urban land density decreased with the distance from the city center to the outskirts.As the only large city,Zhengzhou has experienced the fastest and most compact centralized urban expansion,especially after 2000,while other medium-and small-sized cities have experienced low-intensity decentralized expansion.Third,the urban core has been gradually expanding outward.From 1978 to 2017,the hot-zone of urban growth has moved progressively with the acceleration of urbanization.All cities except Jiaozuo had a single peak in different periods.Forth,the cities in national core grain-producing areas has higher cropland contribution rates and lower urban expansion areas,which was closely related to cropland protection.Further analysis showed that large city was relatively better positioned than smaller cities in the efficiency of their urban infrastructure and the effectiveness of wealth creation efficiency in the urbanized area could be tested in all cities,and the policy factor seemed to play an important role in the urban expansion process.
基金Supported by the National Natural Science Foundation of China(42171337 and 42222503)。
文摘Based on the building height and density data on a 100-m resolution,hourly 2-m temperature and humidity data at83 automatic weather stations,and gridded local climate zone(LCZ)data on a 120-m resolution in urban Beijing in2020,this study first employs the semivariogram combined with building parameters to calculate spatial correlations and has identified an LCZ grid resolution of 500 m suitable for best usage of the available observation data.Then,how the spatially heterogeneous LCZs affect and contribute to the canopy urban heat island intensity(UHII)and urban dry island intensity(UDII)are quantitatively investigated.It is found that UHII is high in winter and low in summer with a unimodal diurnal variation while UDI is low in winter but high in summer with a bimodal diurnal variation.The LCZ with compact mid-rise(open high-rise)buildings exhibits the highest UHII(UDII),followed by the compact high-rise(compact low-rise),while the LCZ of scattered trees presents both the lowest UHII and the lowest UDII.The most significant difference in the UHII(UDII)among the nine LCZ types in the urban area of Beijing is2.62℃(1.1 g kg^(-1)).Area-weighted averaging analysis reveals that the open mid-rise LCZ is the most significant contributor to the UHII(UDII),immediately followed by compact mid-rise(open low-rise),with the least contribution from bare rock or paved(scattered trees).The results also indicate that beyond the intrinsic physical properties of the LCZs of a city,their area proportions cannot be overlooked in evaluating their impact on the UHI and UDI.These quantitatively findings could help urban planners to create a livable urban climate and environment by adjusting the relevant land use.
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Frontier of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. KZCX3-SW-NA3-01)
文摘The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchange values based on comparable price by calculating the carbon sequestration values and the GHGs emission values of marshes and paddy fields respectively in four periods of 1982,1995,2000 and 2005. It is noted that the GHGs emission values are always negative. In this study,the marshes areas decreased from 1438977.0 to 775,132.2ha and the paddy fields areas increased from 417195.8 to 934205.0ha. The values of GHGs exchange of marshes varied from 135877.156×106 to 136882.534×106 yuan(RMB) and those of paddy fields varied from 1006.256×106 to 2767.645×106 yuan. The GHGs exchange values of marshes decreased from 1982 to 2005 on the whole,reversely,those of paddy fields increased,but those in 2005 were lower than those in 2000. In different periods,the GHGs exchange values were always higher in marshes than in paddy fields. The contribution rate of GHGs exchange values per unit area of marshes was also very high in different periods,and the maximum was up to 98.35% in 2005. As far as the whole wetland ecosystem(including marshes and paddy fields) ,assuming a linear change in GHGs exchange values,it represented a cumulative increase of 20926.757×106 yuan from 1982 to 2005. By adding GHGs exchange values increased during those four periods,we obtained a cumulative net increase values of GHGs exchange of wetland ecosystem of 18200.860×106 yuan. The results will be useful for understanding the indirect services provided by marshes and paddy fields.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100101)the National Key Research and Development Program of China(2019YFC0507404)the Gansu Province Science Foundation for Youth,China(20JR5RA543).
文摘Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The present study quantitatively evaluated the effects of climate change and land use/cover change(LUCC)on the lake volume of the Qinghai Lake in China from 1958 to 2018,which is crucial for water resources management in the Qinghai Lake Basin.To explore the effects of climate change and LUCC on the Qinghai Lake volume,we analyzed the lake level observation data and multi-period land use/land cover(LULC)data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018.The lake volume decreased by 105.40×10^(8) m^(3) from 1958 to 2004,with the rate of 2.24×10^(8) m^(3)/a,whereas it increased by 74.02×10^(8) m^(3) from 2004 to 2018,with the rate of 4.66×10^(8) m^(3)/a.Further,the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid.From 1958 to 2018,the increase in precipitation and the decrease in evaporation controlled the change of the lake volume,which were the main climatic factors affecting the lake volume change.From 1977 to 2018,the measured water yield showed an"increase-decrease-increase"fluctuation in the Qinghai Lake Basin.The effects of climate change and LUCC on the measured water yield were obviously different.From 1977 to 2018,the contribution rate of LUCC was -0.76% and that of climate change was 100.76%;the corresponding rates were 8.57% and 91.43% from 1977 to 2004,respectively,and -4.25% and 104.25% from 2004 to 2018,respectively.Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC,as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP.This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.
基金Funded by the National Natural Science Fundation of China(51061015)the scientific Research Program of Jiangsu Economic Information Committee+1 种基金the Program for Postgraduates Research Innovation in University of Jiangsu Province (CX10B_122Z)the Science and Technology Project of Jiangsu Province Construction System (JS2010JH22)
文摘Waste solid propylene oxide sludge (POS) and fly ash were used as main raw material to prepare propylene oxide sludge aggregate (POSA) under the condition of autoclaved (180 ℃,1.0 MPa) curing. Three different test methods namely cylinder compressive strength (CCS), individual aggregate compressive strength (IACS) and strength contribution rate (SCR) proposed were used to characterize the mechanical properties of the autoclaved POSA. POS shell-aggregate with SCR of 94% were prepared under the hydrothermal synthesis and autoclaved curing. The experimental results indicate that CCS and IACS have good consistency in characterizing mechanical properties of POSA. It is suggested that SCR not only can characterize the strength of POSA core, but also can reflect the effect of shell on the performance of POSA. By means of least square method, relationships between CCS and IACS, CCS and SCR, IACS and SCR were deduced.
基金jointly funded by Hebei Key Fund Project(D2015504019)Project of the Ministry of Water Resources(201501008)
文摘This paper presents a method combining single-indicator comprehensive evaluation and influence factor identification to measure groundwater quality. This method not only reflects groundwater quality classification with clear physical significance, but also divides the possibilities of man-made pollution in regional groundwater. The paper selects 6 063 representative groundwater wells in the North China Plain to evaluate 49 groundwater inorganic and organic index and comes to a conclusion: Controlled by geological environment and hydrogeological conditions, the groundwater quality in the North China Plain deteriorates from the bottom of maintain to coastal area, with Class I to III groundwater decreasing from 49% to 3.9% while Class V groundwater increasing from 21% to 86.9%; the quality of deep groundwater is better than that of shallow groundwater; the contribution rate of manganese, total hardness, total dissolved solids and iodide in shallow groundwater to over-III type water exceeds 50%; the contribution rate of nitrite in pollution index reaches 20%; while heavy metal and organic indexes have limited impact on regional groundwater quality. The North China Plain is an important economic area in China. Over decades, it has witnessed intense human activities, and water resource quantity demanded has been far greater than quantity supplied. Due to scarce surface water resource, groundwater becomes the pillar supporting regional economic development. This has led to increasing groundwater exploitation and development. According to statistics, the exploitation degree of shallow groundwater reaches 105% in the North China Plain and 118% in the Hebei Plain; the exploitation degree of deep groundwater reaches 143% in the North China Plain and 163% in the Hebei Plain. The serious over-exploitation of groundwater brings various geological environmental problems, with the worsening of groundwater quality being a typical one. Besides impact brought by human activities, the poor quality of natural water in the North China Plain is also an important factor. Therefore, to understand the current regional groundwater quality situation and to master influence factors and influence degree can provide reliable scientific protection for regional economic development.