Ammonia nitrogen (NH4+-N) is one of the three main forms of total nitrogen (TN). Most studies have estimated the load of TN from nonpoint sources instead of one specific form. The relationship between land use and con...Ammonia nitrogen (NH4+-N) is one of the three main forms of total nitrogen (TN). Most studies have estimated the load of TN from nonpoint sources instead of one specific form. The relationship between land use and concentrations of NH4+-N in runoff was analyzed using the hydraulic analysis functions of a Geographic Information Systems (GIS), and the annual loads of NH4+-N in the Xitiao River catchment were estimated according to model results. The results suggested that the calculated annual loads of NH4+-N...展开更多
On the basis of investigating rural population, land types, livestock and poultry breeding scale in drinking water conservation area of the Hongfeng Lake in Guiyang City, as well as the urban domestic pol utant discha...On the basis of investigating rural population, land types, livestock and poultry breeding scale in drinking water conservation area of the Hongfeng Lake in Guiyang City, as well as the urban domestic pol utant discharge coefficient, livestock and poultry excretion coefficient, nitrogen fertilizer and phosphate fertilizer loss rate in the first national pollution source survey, this paper tried to explore current situation of agricultural non-point source pollution, and provide scientific support for the pollution control. The results showed that in the drinking water conservation area of the Hongfeng lake in 2013, contribution rate of pollution sources to the water pollution in the Hongfeng Lake followed the sequence "livestock and poultry breeding > rural life > farmland fertilizer". Among all agricultural non-point source pollutants, livestock and poultry breeding pollutants were major pollution sources, with a contribution rate to CODCr, TP and NH3-N in water above 50%; rural domestic pollutants were also important pollution sources, its contribution rate to CODCr and NH3-N was 43.49% and 46.69%, respectively; contribution rate of farmland fertilizer pollutants to TN and TP was 33.76% and 27.71%, respectively, higher than that of rural domestic pollutants(25.87% and 6.75%). Therefore, the control of non-point source pollution within the drinking water conservation area should be enhanced, so as to control the pollution from the source.展开更多
Based on the statistical analysis of emission inventory and ISCST3 model simulation, the emission and ambient concentration contributions of energy-use related sources to the major pollutants of SO2, NOx and PM10 in u...Based on the statistical analysis of emission inventory and ISCST3 model simulation, the emission and ambient concentration contributions of energy-use related sources to the major pollutants of SO2, NOx and PM10 in urban areas of Beijing were analyzed. The SO2 emission contributions of coal burning in power plants, industrial and heating sectors were 49%, 26% and 24% respectively. The vehicle exhaust contributed 74% of the NOx concentration. As to PM10, the industrial sector was the largest emission (28%) and concentration (21%) contributor despite of the fugitive sources. The source emission contributions of VOC and NH3, which greatly influence the generation of secondary pollutants, were discussed as well. This paper also analyzed the control strategies of energy consumption and vehicle sources, based on which the control scenario in 2008 was established and the change of emission and concentration contribution were estimated. The results show that the cleaner energy use, industrial structure improvement, transportation mode modification and single vehicle emission control will greatly improve air quality. The industrial sector will change to the largest contributor of SO2 and as to NOx, vehicle emission control is still important.展开更多
An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the...An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the study case a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand COD pollution control target for most watersheds.In contrast it is hardly to achieve the ammonia nitrogen NH4-N total phosphorus TP and biological oxygen demand BOD5 pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds rather than one-size-fits-all .展开更多
Domestic burning emits large amounts of pollutants into the ambient air due to incomplete and inefficient combustion, with significant impacts on indoor air quality and human health. Northeast China is one of the majo...Domestic burning emits large amounts of pollutants into the ambient air due to incomplete and inefficient combustion, with significant impacts on indoor air quality and human health. Northeast China is one of the major contributors to domestic burning emissions in China;however, the high-resolution emissions inventories of domestic biomass and coal burning in Northeast China are lacked, which are needed to estimate the extent of its impact. In this study, we established a town-level emissions inventory of gaseous pollutants and particulate matter(PM) from domestic biomass and coal burning, based on per household consumption in each town in rural region of Northeast China. The results revealed that biomass burning was the major domestic burning source over the region in 2016. Domestic biomass burning is the major contributor to PM and volatile organic compounds(VOCs) emissions, while coal burning is the major contributor to SO2 emissions. High emissions intensities were concentrated around the cities of Harbin, Suihua, Changchun, Qiqihar, and Chifeng, each with emissions intensity for PM2.5 and VOCs of more than 2000 Mg per 27 km × 27 km grid cell. Additionally, there are three burning peaks(6-7 am, 12 pm and 4-7 pm) during both the heating(from October to April) and non-heating seasons(from May to September), due to cooking and heating. The burning peaks in the non-heating season were more notable than those in the heating season. These results suggest that the government should pay more attention to domestic biomass and coal burning in rural areas, in order to reduce pollutant emissions and control regional haze during the heating season.展开更多
The Fluorine release rate of coal, clay of different Fluorine content, and coal mixed with clay used by resident households were studied by using the ion selective electrode (ISE) and solidoid balance methods, and t...The Fluorine release rate of coal, clay of different Fluorine content, and coal mixed with clay used by resident households were studied by using the ion selective electrode (ISE) and solidoid balance methods, and the degree of influence on Fluorine pollu- tion generated by coal and clay was analyzed according to the proportion characteristics of coal used by resident households. The results show that the Fluorine release rate of coal is more than 95% during combustion; The Fluorine release rate of clay is more than 99%; The Fluorine release rate of coal mixed with clay is between 56.44% and 96.64%, and the average value is 76.68%. The clay as a binder for fine coal is one important source of Fluorine pollution caused by coal-combustion in Zhaotong, Yunnan Province. When the Fluorine content of coal is less than 80 mg/kg, the F[uodne amount released from clay (in which Fluorine content is more than 530 mg/kg) is more than 50% of the total Fluorine amount released from coal and clay during coal-combustion. The Fluorine amount released from clay (in which Fluorine content is more than 1 000 mg/kg) is more than 70% of total Fluorine amount released from coal and clay during coal-combustion.展开更多
基金the National Key BasiResearch Project of China (No. G2002CB410807)the National Natural Science Foundation of China (No40571146)
文摘Ammonia nitrogen (NH4+-N) is one of the three main forms of total nitrogen (TN). Most studies have estimated the load of TN from nonpoint sources instead of one specific form. The relationship between land use and concentrations of NH4+-N in runoff was analyzed using the hydraulic analysis functions of a Geographic Information Systems (GIS), and the annual loads of NH4+-N in the Xitiao River catchment were estimated according to model results. The results suggested that the calculated annual loads of NH4+-N...
基金Sponsored by Significant Scientific and Technological Program of Guizhou Province([2015]2001)
文摘On the basis of investigating rural population, land types, livestock and poultry breeding scale in drinking water conservation area of the Hongfeng Lake in Guiyang City, as well as the urban domestic pol utant discharge coefficient, livestock and poultry excretion coefficient, nitrogen fertilizer and phosphate fertilizer loss rate in the first national pollution source survey, this paper tried to explore current situation of agricultural non-point source pollution, and provide scientific support for the pollution control. The results showed that in the drinking water conservation area of the Hongfeng lake in 2013, contribution rate of pollution sources to the water pollution in the Hongfeng Lake followed the sequence "livestock and poultry breeding > rural life > farmland fertilizer". Among all agricultural non-point source pollutants, livestock and poultry breeding pollutants were major pollution sources, with a contribution rate to CODCr, TP and NH3-N in water above 50%; rural domestic pollutants were also important pollution sources, its contribution rate to CODCr and NH3-N was 43.49% and 46.69%, respectively; contribution rate of farmland fertilizer pollutants to TN and TP was 33.76% and 27.71%, respectively, higher than that of rural domestic pollutants(25.87% and 6.75%). Therefore, the control of non-point source pollution within the drinking water conservation area should be enhanced, so as to control the pollution from the source.
文摘Based on the statistical analysis of emission inventory and ISCST3 model simulation, the emission and ambient concentration contributions of energy-use related sources to the major pollutants of SO2, NOx and PM10 in urban areas of Beijing were analyzed. The SO2 emission contributions of coal burning in power plants, industrial and heating sectors were 49%, 26% and 24% respectively. The vehicle exhaust contributed 74% of the NOx concentration. As to PM10, the industrial sector was the largest emission (28%) and concentration (21%) contributor despite of the fugitive sources. The source emission contributions of VOC and NH3, which greatly influence the generation of secondary pollutants, were discussed as well. This paper also analyzed the control strategies of energy consumption and vehicle sources, based on which the control scenario in 2008 was established and the change of emission and concentration contribution were estimated. The results show that the cleaner energy use, industrial structure improvement, transportation mode modification and single vehicle emission control will greatly improve air quality. The industrial sector will change to the largest contributor of SO2 and as to NOx, vehicle emission control is still important.
基金The National Science and Technology Major Project of China(No.2012ZX07301-001)the Shenzhen Environmental Research Project,China Postdoctoral Science Foundation(No.2013M530642)
文摘An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the study case a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand COD pollution control target for most watersheds.In contrast it is hardly to achieve the ammonia nitrogen NH4-N total phosphorus TP and biological oxygen demand BOD5 pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds rather than one-size-fits-all .
基金the auspices of National Key Research and Development Program of China(No.2017YFC0212303,2017YFC0212304)National Natural Science Foundation of China(No.41771504)National Natural Science Foundation of Jilin Province(No.20200201214JC)。
文摘Domestic burning emits large amounts of pollutants into the ambient air due to incomplete and inefficient combustion, with significant impacts on indoor air quality and human health. Northeast China is one of the major contributors to domestic burning emissions in China;however, the high-resolution emissions inventories of domestic biomass and coal burning in Northeast China are lacked, which are needed to estimate the extent of its impact. In this study, we established a town-level emissions inventory of gaseous pollutants and particulate matter(PM) from domestic biomass and coal burning, based on per household consumption in each town in rural region of Northeast China. The results revealed that biomass burning was the major domestic burning source over the region in 2016. Domestic biomass burning is the major contributor to PM and volatile organic compounds(VOCs) emissions, while coal burning is the major contributor to SO2 emissions. High emissions intensities were concentrated around the cities of Harbin, Suihua, Changchun, Qiqihar, and Chifeng, each with emissions intensity for PM2.5 and VOCs of more than 2000 Mg per 27 km × 27 km grid cell. Additionally, there are three burning peaks(6-7 am, 12 pm and 4-7 pm) during both the heating(from October to April) and non-heating seasons(from May to September), due to cooking and heating. The burning peaks in the non-heating season were more notable than those in the heating season. These results suggest that the government should pay more attention to domestic biomass and coal burning in rural areas, in order to reduce pollutant emissions and control regional haze during the heating season.
基金Supported by the National High-Tech Research and Development Program of China(2006AA06Z380)the National Natural Science Fundation of China(40872210)Western Key Fund(90202017)
文摘The Fluorine release rate of coal, clay of different Fluorine content, and coal mixed with clay used by resident households were studied by using the ion selective electrode (ISE) and solidoid balance methods, and the degree of influence on Fluorine pollu- tion generated by coal and clay was analyzed according to the proportion characteristics of coal used by resident households. The results show that the Fluorine release rate of coal is more than 95% during combustion; The Fluorine release rate of clay is more than 99%; The Fluorine release rate of coal mixed with clay is between 56.44% and 96.64%, and the average value is 76.68%. The clay as a binder for fine coal is one important source of Fluorine pollution caused by coal-combustion in Zhaotong, Yunnan Province. When the Fluorine content of coal is less than 80 mg/kg, the F[uodne amount released from clay (in which Fluorine content is more than 530 mg/kg) is more than 50% of the total Fluorine amount released from coal and clay during coal-combustion. The Fluorine amount released from clay (in which Fluorine content is more than 1 000 mg/kg) is more than 70% of total Fluorine amount released from coal and clay during coal-combustion.