期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin 被引量:7
1
作者 Li Ke Liu Wangkai +2 位作者 Wang Jun Huang Yong Liu Meng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1390-1400,共11页
A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic co... A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements. 展开更多
关键词 Decoupling control Environment cabin Fuzzy control Liquid nitrogen Mathematical model Vacuum
原文传递
An intelligent control method for a large multi-parameter environmental simulation cabin 被引量:12
2
作者 Li Ke Liu Wangkai +1 位作者 Wang Jun Huang Yong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1360-1369,共10页
The structure and characteristics of a large multi-parameter environmental simulation cabin are introduced.Due to the diffculties of control methods and the easily damaged characteristics,control systems for the large... The structure and characteristics of a large multi-parameter environmental simulation cabin are introduced.Due to the diffculties of control methods and the easily damaged characteristics,control systems for the large multi-parameter environmental simulation cabin are diffcult to be controlled quickly and accurately with a classical PID algorithm.Considering the dynamic state characteristics of the environmental simulation test chamber,a lumped parameter model of the control system is established to accurately control the multiple parameters of the environmental chamber and a fuzzy control algorithm combined with expert-PID decision is introduced into the temperature,pressure,and rotation speed control systems.Both simulations and experimental results have shown that compared with classical PID control,this fuzzy-expert control method can decrease overshoot as well as enhance the capacity of anti-dynamic disturbance with robustness.It can also resolve the contradiction between rapidity and small overshoot,and is suitable for application in a large multi-parameter environmental simulation cabin control system. 展开更多
关键词 Environmental cabin Environmental testing Expert system Fuzzy control Mathematical models Turbines
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部