Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and fur...Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.展开更多
基金supported by the National Natural Science Foundation of China(61403215)the National Natural Science Foundation of Tianjin(13JCYBJC36600)the Fundamental Research Funds for the Central Universities
文摘Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.