期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
A low-noise X-band microwave source with digital automatic frequency control for electron paramagnetic resonance spectroscopy
1
作者 贺羽 康润琪 +1 位作者 石致富 荣星 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期46-51,共6页
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto... We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science. 展开更多
关键词 electron paramagnetic resonance X-BAND microwave source automatic frequency control
下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:16
2
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper prese... Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control(DMPC) based on coordination scheme.The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints(GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed–loop performance, and computational burden with the physical constraints. 展开更多
关键词 Distributed model predictive control(DMPC) doubly fed induction generator(DFIG) load frequency control(LFC)
下载PDF
Finite Frequency Fuzzy H∞Control for Uncertain Active Suspension Systems With Sensor Failure 被引量:4
3
作者 Zhenxing Zhang Hongyi Li +1 位作者 Chengwei Wu Qi Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期777-786,共10页
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f... This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Active vehicle suspension systems finite frequency control sensor failure Takagi-Sugeno fuzzy model
下载PDF
Robust H_∞ Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach 被引量:4
4
作者 Yonghui Sun Yingxuan Wang +2 位作者 Zhinong Wei Guoqiang Sun Xiaopeng Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期610-617,共8页
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re... This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results. 展开更多
关键词 Load frequency control(LFC) multi-area power system robust control sliding mode control(SMC) time delay
下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:5
5
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
下载PDF
Addressing Frequency Control Challenges in Future Low-Inertia Power Systems:A Great Britain Perspective 被引量:2
6
作者 Qiteng Hong Md Asif Uddin Khan +3 位作者 Callum Henderson AgustíEgea-Àlvarez Dimitrios Tzelepis Campbell Booth 《Engineering》 SCIE EI 2021年第8期1057-1063,共7页
The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction ... The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction in system inertia,the transmission system in Great Britain(GB)faces some unique challenges owing to its relatively small capacity,while being decoupled from other transmission systems and with the renewable resources largely non-uniformly distributed across the system.This paper presents opinions and insights on the challenges associated with frequency control in a low-inertia system and the potential solutions from a GB perspective.In this paper,we focus on three main techniques that act over different time scales:synchronous condensers,inertia emulation,and fast frequency response.We evaluate their relative advantages and limitations with learnings from recent research and development projects in GB,along with the opinions on their roles in addressing the frequency control challenges in future low-inertia systems. 展开更多
关键词 Fast frequency control Inertia emulation Synchronous compensation Low-inertia systems
下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
7
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 Multi-objective optimization Voltage control frequency control Power flow controllable loads Game theory
下载PDF
Load Frequency Control of Multi-interconnected Renewable Energy Plants Using Multi-Verse Optimizer 被引量:1
8
作者 Hegazy Rezk Mohamed A.Mohamed +1 位作者 Ahmed A.Zaki Diab N.Kanagaraj 《Computer Systems Science & Engineering》 SCIE EI 2021年第5期219-231,共13页
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente... A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller. 展开更多
关键词 Load frequency control multi-verse optimization multi-area power system renewable energy sources
下载PDF
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:1
9
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
下载PDF
A Novel Resonant Frequency Tracking Control for Linear Compressor Based on MRAS Method 被引量:1
10
作者 Wei Xu Qizhe Wang +2 位作者 Xiang Li Yi Liu Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第3期227-236,共10页
To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady ... To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady state characteristics of the system,which suffers from slow convergence speed,low accuracy and slow system response.In order to solve these problems,a novel resonant frequency tracking control for linear compressor based on model reference adaptive system(MRAS)is proposed in this paper,and the parameter adaptive rate is derived by the Popov's hyperstability theory,so that the system resonant frequency can be directly calculated through the parameter adaptive rate.Furthermore,the traditional algorithm needs to calculate the piston stroke signal by integrating the back-EMF,which has the problem of integral drift.The algorithm proposed in this paper only needs the velocity signal,and the accuracy of the velocity calculation can be ensured by utilizing the self-adaptive band-pass filter(SABPF),thereby greatly improving the accuracy of the resonance frequency calculation.Simulation results verify the effectiveness of the proposed algorithm. 展开更多
关键词 linear compressor linear oscillating motor(LOM) resonant frequency tracking control model reference adaptive system(MRAS)
下载PDF
Load Frequency Control of Small Hydropower Plants Using One-Input Fuzzy PI Controller with Linear and Non-Linear Plant Model 被引量:2
11
作者 Derek Ajesam Asoh Edwin Nyuysever Mbinkar Albert Nouck Moutlen 《Smart Grid and Renewable Energy》 2022年第1期1-16,共16页
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes... <span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span> 展开更多
关键词 Small Hydropower Plant Linear and Non-Linear Model Load frequency control Non-Linear control Fuzzy Logic controller Renewable Energy
下载PDF
Distributed demand side management via smart appliances contributing to frequency control
12
作者 张玮琛 《Journal of Chongqing University》 CAS 2015年第3期101-108,共8页
Nowadays renewable energy has become a trend for energy production but its variable nature has made balancing of demand and supply of the power grid difficult. Dynamic demand management using smart appliances is propo... Nowadays renewable energy has become a trend for energy production but its variable nature has made balancing of demand and supply of the power grid difficult. Dynamic demand management using smart appliances is proposed to serve as a way that part of the regulation burden of balancing demand and supply is shifted to the demand side. However, if all appliances respond to the same frequency deviation, they may start to synchronize, causing large power overshoots and instability of the power grid. Therefore, the idea of implementing randomness into the frequency control of the appliances is proposed and this is what we call a stochastic approach. Simulators are built from scratch to model both scenarios. The effect of synchronization is analyzed and the parameters that can affect the synchronization are investigated. It has been found that the larger the contribution from the smart appliances to the power grid, the easier and faster the synchronization takes place. The stochastic approach solves the problem of synchronization and averages out the large power overshoot. However, the overall performance of stochastic operations is unacceptable due to the randomness in the operation though the mean and variance are as expected. More advanced feedback policies and schemes may be designed to achieve a better performance. 展开更多
关键词 renewable energy demand side smart grid smart appliance frequency control RANDOMNESS
下载PDF
Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller
13
作者 Krishan Arora Gyanendra Prasad Joshi +4 位作者 Mahmoud Ragab Muhyaddin Rawa Ahmad H.Milyani Romany F.Mansour Eunmok Yang 《Computers, Materials & Continua》 SCIE EI 2022年第11期3165-3180,共16页
Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,aut... Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,autonomous power manufacturers,and buyers have created complex installation processes.The regular active load and inefficiency of best measures among varied associates is a huge hazard.Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors.It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load.Therefore,it can be proficient by implementing Load Frequency Control under the Bilateral case,stabilizing the power and frequency distinction within the interrelated power grid.Balancing the net deviation in multiple areas is possible by minimizing the unbalance of Bilateral Contracts with the help of proportional integral and advanced controllers like Harris Hawks Optimizer.We proposed the advanced controller Harris Hawk optimizer-based model and validated it on a test bench.The experiment results show that the delay time is 0.0029 s and the settling time of 20.86 s only.This model can also be leveraged to examine the decision boundaries of the Bilateral case. 展开更多
关键词 Bilateral contract load frequency control OPTIMIZATION harris hawks optimizer
下载PDF
Coefficient Diagram Method Based Load Frequency Control for a Modern Power System
14
作者 Princess Garasi Yaser Qudaih +2 位作者 Raheel Ali Masayuki Watanabe Yasunori Mitani 《Journal of Electronic Science and Technology》 CAS 2014年第3期270-276,共7页
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste... increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs. 展开更多
关键词 BATTERY coefficient diagram method electric vehicles heat pump load frequency control renewable energy sources.
下载PDF
Kalman-Filtering-Based Frequency Control Strategy Considering Electrolytic Aluminum Load
15
作者 Yuqin Chen Shihai Yang +1 位作者 Yueping Kong Mingming Chen 《Energy Engineering》 EI 2022年第4期1517-1529,共13页
Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)acc... Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)accounts for large amount of the local electric loads in some areas.The participation of EAL in local frequency control has huge application prospects.However,the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption.Focusing on this problem,this paper proposes a control strategy for EAL to participate in the frequency control.For the controller design of the EAL system,the system frequency response model is established and the EAL transfer function model is developed based on the equivalent circuit of EAL.For the problem of load-side frequency measurement error,the frequency estimation method based on Kalman-filtering is designed.To improve the performance of EAL in the frequency control,a fuzzy EAL controller is designed.The testing examples show that the designed Kalman-filter has good performance in de-noising the measured frequency,and the designed fuzzy controller has better performance in stabilizing system frequency than traditional methods. 展开更多
关键词 Electrolytic aluminum load kalman-filtering frequency control
下载PDF
High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control
16
作者 张一驰 范鹏瑞 +3 位作者 元晋鹏 汪丽蓉 肖连团 贾锁堂 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期36-38,共3页
We experimentally observe the high resolution direct frequency comb spectroscopy using counter-propagating broadband femtosecond pulses on two-photon transitions in room-temperature ^87 Rb atoms. The Doppler broad- en... We experimentally observe the high resolution direct frequency comb spectroscopy using counter-propagating broadband femtosecond pulses on two-photon transitions in room-temperature ^87 Rb atoms. The Doppler broad- ened background is effectively eliminated with the pulse shaping method and the spectrum modulation technique. The combination of the pulse shaping method and the spectra modulation technique provides a potential approachto reduce background of at least 99%. 展开更多
关键词 of on in by High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond frequency Comb via Pulses control RB is
下载PDF
Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals
17
作者 贾兆旻 杨旭海 +3 位作者 孙保琪 周晓平 向波 窦新宇 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期29-32,共4页
We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit.... We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude. 展开更多
关键词 Direct Digital frequency control Based on the Phase Step Change Characteristic between Signals
下载PDF
Frequency detection of self-adaption control based on chaotic theory
18
作者 徐艳春 瞿晓东 李振兴 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期202-206,共5页
Low-order Duffing and high-order Rossler chaotic oscillator are connected together and new self-adaption frequency detection method is presented. The frequency difference control between unknown signal and the periodi... Low-order Duffing and high-order Rossler chaotic oscillator are connected together and new self-adaption frequency detection method is presented. The frequency difference control between unknown signal and the periodic driving force is realized in this paper and the self-adaption is obtained. Thus, the detection precision and speed are promoted. The limitation that there are too many chaotic oscillators in Duffing system is broken. Meanwhile the disadvantage that the detection speed is lower in R ssler chaotic control is overcome. The self-adaption choice of frequency difference control is realized using the Duffing and Rssler different chaotic oscillators to obtain unknown signal frequency. The simulation results show that the presented method is feasible and effective. 展开更多
关键词 frequency detection self-adaption control chaotic theory
下载PDF
Application of Frequency Control Technique to a Rotary Drill
19
作者 YAO Can-yang 《International Journal of Plant Engineering and Management》 2009年第1期38-42,共5页
The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-d... The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-down, and the mechanical running performance are also analyzed. The result of application indicates that the frequency control system excellently solves the problems of start, stop, and speed regulation of the drill. The equipment maintenance workload and cost are thus reduced. 展开更多
关键词 rotary drill frequency control PLC MOTOR
下载PDF
Hybrid Fuzzy Controller Based Frequency Regulation in Restructured Power System
20
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期759-770,共12页
This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs ... This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs an intelligent controller to adapt the changes imposed by the dynamics of restructured bilateral contracts. Fuzzy Logic Control deals well with uncertainty and indistinctness while Particle Swarm Optimization (PSO) is a well-known optimization tool. Abovementioned techniques are combined and called as Hybrid Fuzzy to improve the dynamic performance of the system. Frequency control of restructured system has been achieved by automatic Membership Function (MF) tuned fuzzy logic controller. The parameters defining membership function has been tuned and updated from time to time using Particle Swarm Optimization (PSO). The robustness of the proposed hybrid fuzzy controller has been compared with conventional fuzzy logic controller using performance measures like overshoot and settling time following a step load perturbation. The motivation for using membership function tuning using PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes is tested on a two-area restructured power system. 展开更多
关键词 Fuzzy Logic controller Membership Function Particle Swarm Optimization Load frequency control Bilateral Market
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部