In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement r...Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement result shows that this method is effective and utilitarian.展开更多
Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interfa...Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interface. Much more, however, would be required in building a smart grid than just smart meters. This paper explores the conceptual architecture of smart grid. It highlights the need for additional infrastructure to realize full potential of smart grid. The information presented in this paper is an attempt to uncover what the future in smart grid could be and what infrastructure would be required to tap its potential. As smart grid evolves, more functionality would be built in the constituents. The paper also proposes mathematical basis for some of the controller algorithms.展开更多
This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is su...Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.展开更多
The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalanc...The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalance grid condition for renewable energy processing. It is demonstrated that the closed-loop current control is decoupled with the grid voltage feed-forward control,and good waveform of grid current with low order harmonics is obtained under unbalance grid condition. This novel strategy is simple and reliable,applied with PI regulator but no resonant controller in α,β two-phase stationary frame. Moreover,the results of experiment and simulation are also illustrated to validate the novel strategy well applied in the closed-loop current control system under unbalanced grid condition.展开更多
Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy reso...Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy resources, such as wind turbine and photovoltaic power systems, together with storage devices. It is essential to protect a micro grid in both the grid-connected and the islanded mode of operation against all different types of faults. This paper describes micro grid protection and safety concept with central control and monitoring unit where multifunctional intelligent digital relay could be used. This central control & monitoring infrastructure is used for adaptive relay settings strategy for micro grid protection. Also operational safety design concept and fault mitigation technique is proposed to ensure confidence in protection system.展开更多
This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and dampi...This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and damping to the system. However, it is found that the typical formulation of damping power does not work properly when the grid forming gen-set operates in droop mode because of the unknown stabilization value of the grid frequency. As a solution to this problem, an estimator for the stabilization frequency that works in conjunction with the damping function of the VSM is proposed. Theoretical and experimental results provide evidence of a satisfactory performance of the proposed VSM with estimator for different values of the gen-set droop factor. The estimated stabilization frequency converges in approximately 2 s and the maximum frequency deviation during the transient is reduced in 34%, on average.展开更多
This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pu...This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.展开更多
For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to...For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.展开更多
Different droop control methods for PV-based communal grid networks (minigrids and microgrids) with different line resistances (R) and impedances (X) are modelled and simulated in MATLAB to determine the most efficien...Different droop control methods for PV-based communal grid networks (minigrids and microgrids) with different line resistances (R) and impedances (X) are modelled and simulated in MATLAB to determine the most efficient control method for a given network. Results show that active power-frequency (P-f) droop control method is the most efficient for low voltage transmission networks with low X/R ratios while reactive power-voltage (Q-V) droop control method is the most efficient for systems with high X/R ratios. For systems with complex line resistances and impedances, i.e. near unity X/R ratios, P-f or Q-V droop methods cannot individually efficiently regulate line voltage and frequency. For such systems, P-Q-f droop control method, where both active and reactive power could be used to control PCC voltage via shunt-connected inverters, is determined to be the most efficient control method. Results also show that shunt-connection of inverters leads to improved power flow control of interconnected communal grids by allowing feeder voltage regulation, load reactive power support, reactive power management between feeders, and improved overall system performance against dynamic disturbances.展开更多
This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue...This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue for stable and reliable operation of the micro-grid systems. This issue becomes more critical when a micro-grid system contains stochastic nature distributed generations such as wind and solar because their output power changes non-uniformly. In order to achieve accurate and fast power balance in such a micro-grid system, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates determining the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is simulated for the operation of a micro-grid system in stand-alone mode under various operating conditions. The simulated results show the ability of the developed controller for stable and reliable operation of the micro-grid that contains renewable sources. The experimental development of the micro-grid system and the testing of the developed active power controller are presented in PART II of this paper.展开更多
Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with ...Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with current type modulators for grid-connected applications.For a grid-connected VSI,the performance of existing current controllers based on SVPWM is compromised by grid harmonics,control delay and system nonlinearities such as switching dead time.Moreover,unlike current type PWM,SVPWM does not inherently have over-current protection.A novel SVPWM-based current controller is proposed for three-phase grid-connected VSIs for small wind turbine appli-cations.To overcome the drawbacks of SVPWM,a grid harmonic compensation method is proposed along with compen-sation for control delays.Both simulation and experimental results have established excellent steady-state response and fast dynamic response of the current controller.In addition,the DSP-based control system has both improved real-time control performance and fast response for over-current protection.展开更多
This paper presents experimental development and performance testing of an active power controller for stable and reliable operation of a micro-grid system. In order to achieve accurate and fast power balance in a mic...This paper presents experimental development and performance testing of an active power controller for stable and reliable operation of a micro-grid system. In order to achieve accurate and fast power balance in a micro-grid system that contains renewable energy sources, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates to determine the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is tested and validated using a micro-grid prototype in the laboratory environment for stand-alone mode of operation under various operating conditions. The key development in the micro-grid prototype is the development of a wind turbine simulator. A dSPACE ds1104 DSP board is used to implement and interface the designed controller with the micro-grid system. The experimental investigation of the developed controller presents the significant capability to achieve continuous power balance in the micro-grid system, while it maintains stable and reliable operation of the system. Finally, the power quality of the isolated micro-grid system is presented and discussed under the operation of the developed controller.展开更多
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement result shows that this method is effective and utilitarian.
文摘Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interface. Much more, however, would be required in building a smart grid than just smart meters. This paper explores the conceptual architecture of smart grid. It highlights the need for additional infrastructure to realize full potential of smart grid. The information presented in this paper is an attempt to uncover what the future in smart grid could be and what infrastructure would be required to tap its potential. As smart grid evolves, more functionality would be built in the constituents. The paper also proposes mathematical basis for some of the controller algorithms.
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
文摘Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.
文摘The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalance grid condition for renewable energy processing. It is demonstrated that the closed-loop current control is decoupled with the grid voltage feed-forward control,and good waveform of grid current with low order harmonics is obtained under unbalance grid condition. This novel strategy is simple and reliable,applied with PI regulator but no resonant controller in α,β two-phase stationary frame. Moreover,the results of experiment and simulation are also illustrated to validate the novel strategy well applied in the closed-loop current control system under unbalanced grid condition.
文摘Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy resources, such as wind turbine and photovoltaic power systems, together with storage devices. It is essential to protect a micro grid in both the grid-connected and the islanded mode of operation against all different types of faults. This paper describes micro grid protection and safety concept with central control and monitoring unit where multifunctional intelligent digital relay could be used. This central control & monitoring infrastructure is used for adaptive relay settings strategy for micro grid protection. Also operational safety design concept and fault mitigation technique is proposed to ensure confidence in protection system.
文摘This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and damping to the system. However, it is found that the typical formulation of damping power does not work properly when the grid forming gen-set operates in droop mode because of the unknown stabilization value of the grid frequency. As a solution to this problem, an estimator for the stabilization frequency that works in conjunction with the damping function of the VSM is proposed. Theoretical and experimental results provide evidence of a satisfactory performance of the proposed VSM with estimator for different values of the gen-set droop factor. The estimated stabilization frequency converges in approximately 2 s and the maximum frequency deviation during the transient is reduced in 34%, on average.
基金supported by the national 863 program (2011AA050204)
文摘This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.
文摘For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.
文摘Different droop control methods for PV-based communal grid networks (minigrids and microgrids) with different line resistances (R) and impedances (X) are modelled and simulated in MATLAB to determine the most efficient control method for a given network. Results show that active power-frequency (P-f) droop control method is the most efficient for low voltage transmission networks with low X/R ratios while reactive power-voltage (Q-V) droop control method is the most efficient for systems with high X/R ratios. For systems with complex line resistances and impedances, i.e. near unity X/R ratios, P-f or Q-V droop methods cannot individually efficiently regulate line voltage and frequency. For such systems, P-Q-f droop control method, where both active and reactive power could be used to control PCC voltage via shunt-connected inverters, is determined to be the most efficient control method. Results also show that shunt-connection of inverters leads to improved power flow control of interconnected communal grids by allowing feeder voltage regulation, load reactive power support, reactive power management between feeders, and improved overall system performance against dynamic disturbances.
文摘This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue for stable and reliable operation of the micro-grid systems. This issue becomes more critical when a micro-grid system contains stochastic nature distributed generations such as wind and solar because their output power changes non-uniformly. In order to achieve accurate and fast power balance in such a micro-grid system, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates determining the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is simulated for the operation of a micro-grid system in stand-alone mode under various operating conditions. The simulated results show the ability of the developed controller for stable and reliable operation of the micro-grid that contains renewable sources. The experimental development of the micro-grid system and the testing of the developed active power controller are presented in PART II of this paper.
文摘Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with current type modulators for grid-connected applications.For a grid-connected VSI,the performance of existing current controllers based on SVPWM is compromised by grid harmonics,control delay and system nonlinearities such as switching dead time.Moreover,unlike current type PWM,SVPWM does not inherently have over-current protection.A novel SVPWM-based current controller is proposed for three-phase grid-connected VSIs for small wind turbine appli-cations.To overcome the drawbacks of SVPWM,a grid harmonic compensation method is proposed along with compen-sation for control delays.Both simulation and experimental results have established excellent steady-state response and fast dynamic response of the current controller.In addition,the DSP-based control system has both improved real-time control performance and fast response for over-current protection.
文摘This paper presents experimental development and performance testing of an active power controller for stable and reliable operation of a micro-grid system. In order to achieve accurate and fast power balance in a micro-grid system that contains renewable energy sources, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates to determine the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is tested and validated using a micro-grid prototype in the laboratory environment for stand-alone mode of operation under various operating conditions. The key development in the micro-grid prototype is the development of a wind turbine simulator. A dSPACE ds1104 DSP board is used to implement and interface the designed controller with the micro-grid system. The experimental investigation of the developed controller presents the significant capability to achieve continuous power balance in the micro-grid system, while it maintains stable and reliable operation of the system. Finally, the power quality of the isolated micro-grid system is presented and discussed under the operation of the developed controller.