The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
This paper presents an improved rate control method for H.264. First, the scene changes are detected by the average absolute difference of the brightness histograms between the adjacent frames. Then, the bit allocatio...This paper presents an improved rate control method for H.264. First, the scene changes are detected by the average absolute difference of the brightness histograms between the adjacent frames. Then, the bit allocation and quantization parameters are adjusted, using a certain threshold. In addition, the calculation of the mean absolute difference (MAD) is modified in an alternative way, which makes the rate distortion optimization (RDO) more accurate. Extensive simulation results show that the proposed method, compared with G012, can improve the average peak signal-to-noise ratio (PSNR) and moderate the image quality.展开更多
Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by ...Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by the strapdown inertial navigation system/global position system (SINS/GPS) of air ammunition, optimal guidance law is designed by applying optimal control theory. The simulation is provided to indicate that when the air ammunition reaches the target, its line-of-sight (LOS) and LOS angular rate can nearly equal zero. So the air ammunition can get good terminal attitude, and the air ammunition reaches the target at the expected velocity and heading.展开更多
The optimal control of the partially observable stochastic system at the risk-sensitive cost is considered in this paper. The system dynamics has a general correlation between system and measurement noise. And the ris...The optimal control of the partially observable stochastic system at the risk-sensitive cost is considered in this paper. The system dynamics has a general correlation between system and measurement noise. And the risk-sensitive cost contains a general quadratic term (with cross terms and extra linear terms). The explicit solution of such a problem is presented here using the output feedback control method. This clean and direct derivation enables one to convert such partial observable problems into the equivalent complete observable control problems and use the routine ways to solve them.展开更多
A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall ...A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.展开更多
The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena a...The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.展开更多
With the increase of the interest in solar sailing, it is required to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalie...With the increase of the interest in solar sailing, it is required to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. In this paper, a technique for escaping the Earth by using a solar sail is developed and numerically simulated. The spacecraft is initially in a geosynchronous transfer orbit (GTO). Blended solar sail analytical control law, explicitly independent of time, are then presented, which provide near-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller. This control law is investigated from a range of initial conditions and is shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the blending solar sail analytical control law is suitable for solar sail on-board autonomously control system.展开更多
A stochastic sliding-mode variable structure guidance law involving optimal control theory is presented for the missile target intercept model, in which state noise, uncertain system parameters, target movement and me...A stochastic sliding-mode variable structure guidance law involving optimal control theory is presented for the missile target intercept model, in which state noise, uncertain system parameters, target movement and measured noise are considered. This guidance law synthesizes the merits of optimal guidance law with line-of-sight rate convergence and sliding-mode guidance law with strong robustness. Through theoretic analysis, it is proved that the sliding mode hyperplane is sub-achievable in the closed loop system. The numerical results show the effectiveness of the proposed control algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
基金Supported by the National Natural Science Foundation of China (60372057)
文摘This paper presents an improved rate control method for H.264. First, the scene changes are detected by the average absolute difference of the brightness histograms between the adjacent frames. Then, the bit allocation and quantization parameters are adjusted, using a certain threshold. In addition, the calculation of the mean absolute difference (MAD) is modified in an alternative way, which makes the rate distortion optimization (RDO) more accurate. Extensive simulation results show that the proposed method, compared with G012, can improve the average peak signal-to-noise ratio (PSNR) and moderate the image quality.
文摘Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by the strapdown inertial navigation system/global position system (SINS/GPS) of air ammunition, optimal guidance law is designed by applying optimal control theory. The simulation is provided to indicate that when the air ammunition reaches the target, its line-of-sight (LOS) and LOS angular rate can nearly equal zero. So the air ammunition can get good terminal attitude, and the air ammunition reaches the target at the expected velocity and heading.
基金This project was supported by the National Natural Science Foundation of China(60004005)the Excellent Young Teacher Program of MOE.
文摘The optimal control of the partially observable stochastic system at the risk-sensitive cost is considered in this paper. The system dynamics has a general correlation between system and measurement noise. And the risk-sensitive cost contains a general quadratic term (with cross terms and extra linear terms). The explicit solution of such a problem is presented here using the output feedback control method. This clean and direct derivation enables one to convert such partial observable problems into the equivalent complete observable control problems and use the routine ways to solve them.
基金supported in part by the National Natural Science Foundation of China(Nos.61773202,52072174)the Foundation of National Defense Science and Technology Key Laboratory of Avionics System Integrated Technology of China Institute of Aeronautical Radio Electronics(No.6142505180407)+1 种基金the Open Fund for Civil Aviation General Aviation Operation Key Laboratory of China Civil Aviation Management Cadre Institute(No.CAMICKFJJ-2019-04)the National key R&D plan(No.2021YFB1600500)。
文摘A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.
文摘The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.
基金Sponsored by the National Natural Science Foundation of China ( Grant No. 61005060)
文摘With the increase of the interest in solar sailing, it is required to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. In this paper, a technique for escaping the Earth by using a solar sail is developed and numerically simulated. The spacecraft is initially in a geosynchronous transfer orbit (GTO). Blended solar sail analytical control law, explicitly independent of time, are then presented, which provide near-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller. This control law is investigated from a range of initial conditions and is shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the blending solar sail analytical control law is suitable for solar sail on-board autonomously control system.
基金supported by the National Natural Science Foundation of China (No. 60674031)the Doctorate Foundation of the Engineering College, Air Force Engineering University (No. BC07004)
文摘A stochastic sliding-mode variable structure guidance law involving optimal control theory is presented for the missile target intercept model, in which state noise, uncertain system parameters, target movement and measured noise are considered. This guidance law synthesizes the merits of optimal guidance law with line-of-sight rate convergence and sliding-mode guidance law with strong robustness. Through theoretic analysis, it is proved that the sliding mode hyperplane is sub-achievable in the closed loop system. The numerical results show the effectiveness of the proposed control algorithm.