Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method base...Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.展开更多
基金support by the National Natural Science Foundation of China (No.52202474)China Postdoctoral Science Foundation (No.2023M731655)+3 种基金Major Projects of National Science and Technology,China (No.J2019-I-0020-0019)Advanced Aviation Power Innovation Workstation Project,China (No.HKCX2022-01-026-03)Basic Research Business Fees for Central Universities,China (No.NT2023004)Nanjing University of Aeronautics and Astronautics Forward-looking Layout Research Project,China (No.1002-ILA22037-1A22).
文摘Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.