在天文观测中,需要望远镜能快速、准确地指向目标天体,并进行稳定跟踪。针对怀柔太阳观测基地(Huairou Solar Observing Station,HSOS)的全日面磁场与活动监测望远镜(The Solar Magnetism and Activity Telescope,SMAT)进行轴系升级,使...在天文观测中,需要望远镜能快速、准确地指向目标天体,并进行稳定跟踪。针对怀柔太阳观测基地(Huairou Solar Observing Station,HSOS)的全日面磁场与活动监测望远镜(The Solar Magnetism and Activity Telescope,SMAT)进行轴系升级,使用伺服电机轴上23位高精度绝对式编码器替代光栅钢带码盘,通过VSOP87行星理论实时计算日面中心位置,使用基于大面阵CCD的高精度导行系统不间断跟踪并记录太阳位置,利用最小二乘法分段拟合太阳实时位置与绝对式编码器数值,建立指向算法并实现日面中心指向。经实测,赤经方向的指向误差约为36.69″,赤纬方向的指向误差约为21.49″,满足全日面太阳磁场望远镜的指向要求,该方法成本低,兼容性高,对于其他赤道式望远镜的升级改造具有借鉴意义。展开更多
In this paper, we have introduced a six-compartmental epidemic model with hand, foot and mouth disease (HFMD) infection. The total population is divided into six subclasses, namely susceptible, exposed, infective in...In this paper, we have introduced a six-compartmental epidemic model with hand, foot and mouth disease (HFMD) infection. The total population is divided into six subclasses, namely susceptible, exposed, infective in asymptomatic phase, infective in symptomatic phase, quarantined and recovered class. Some basic properties such as boundedness and non-negativity of solutions are discussed. The basic reproduction number (R0) of the system is obtained using next generation matrix method. Then the deterministic dynamical behaviors of the system are studied. Our study includes the existence and stability analysis of equilibrium points of the system. The sensitivity analysis of our system helps us to find out the parameters of greater interest. Next, we deal with the epidemic model with three controls (two treatment controls with quarantine control). We show that there exists an optimal control, which is effective in controlling the disease outbreak in a cost effective way. Numerical simulation is presented with the help of MATLAB, which shows tile reliability of our model from the practical point of view.展开更多
文摘在天文观测中,需要望远镜能快速、准确地指向目标天体,并进行稳定跟踪。针对怀柔太阳观测基地(Huairou Solar Observing Station,HSOS)的全日面磁场与活动监测望远镜(The Solar Magnetism and Activity Telescope,SMAT)进行轴系升级,使用伺服电机轴上23位高精度绝对式编码器替代光栅钢带码盘,通过VSOP87行星理论实时计算日面中心位置,使用基于大面阵CCD的高精度导行系统不间断跟踪并记录太阳位置,利用最小二乘法分段拟合太阳实时位置与绝对式编码器数值,建立指向算法并实现日面中心指向。经实测,赤经方向的指向误差约为36.69″,赤纬方向的指向误差约为21.49″,满足全日面太阳磁场望远镜的指向要求,该方法成本低,兼容性高,对于其他赤道式望远镜的升级改造具有借鉴意义。
文摘In this paper, we have introduced a six-compartmental epidemic model with hand, foot and mouth disease (HFMD) infection. The total population is divided into six subclasses, namely susceptible, exposed, infective in asymptomatic phase, infective in symptomatic phase, quarantined and recovered class. Some basic properties such as boundedness and non-negativity of solutions are discussed. The basic reproduction number (R0) of the system is obtained using next generation matrix method. Then the deterministic dynamical behaviors of the system are studied. Our study includes the existence and stability analysis of equilibrium points of the system. The sensitivity analysis of our system helps us to find out the parameters of greater interest. Next, we deal with the epidemic model with three controls (two treatment controls with quarantine control). We show that there exists an optimal control, which is effective in controlling the disease outbreak in a cost effective way. Numerical simulation is presented with the help of MATLAB, which shows tile reliability of our model from the practical point of view.