In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignme...In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detai...The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detailed.To solve the problem of out-of-tolerance in the system dynamic characteristics,an advanced correction network algorithm architecture and double notch filter were designed.Experimental verification was conducted to prove that the dynamic characteristics requirement under multiple operating conditions could be met.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a ...An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a substitute for two springs.Based on a mathematical modeling,suspension parameters were introduced for a certain type of wheeled vehicles.The functions and its mechanism in regulating terrain clearance and adjusting attitudes were subsequently explained respectively,together with its semi-active control mechanism and characteristics In conclusion,our data in the study show that the new mechanical design of suspensions not only could realize adjusting terrain clearance and static vehicle pose,but also had an ideal stiffness that could realize a semi-active suspension function through adjusting suspension's stiffness.Therefore it can bequite suitable for off-road wheeled vehicles and military wheeled vehicles.展开更多
由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中...由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中的接触传感器计量数据抗干扰处理,并通过动态选取阈值的方法,对经过小波变换后的数据去除噪声。使用低功耗自适应集簇分层型(low energy adaptive clustering hierarchy,LEACH)协议分簇代替传统的B-MAC协议;根据簇内监测值,引入阈值分析方法获取传感器计量指标,并将其作为判定依据进行误差检测,根据计量指标的变化情况判断是否存在计量误差。实验结果表明,所提方法可以准确且有效检测出机械电表接触传感器计量误差,解决DCS中机械电表的运行隐患问题。展开更多
文摘In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
文摘The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detailed.To solve the problem of out-of-tolerance in the system dynamic characteristics,an advanced correction network algorithm architecture and double notch filter were designed.Experimental verification was conducted to prove that the dynamic characteristics requirement under multiple operating conditions could be met.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Supported by the Ministerial Level Research Foundation(4030.4)
文摘An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a substitute for two springs.Based on a mathematical modeling,suspension parameters were introduced for a certain type of wheeled vehicles.The functions and its mechanism in regulating terrain clearance and adjusting attitudes were subsequently explained respectively,together with its semi-active control mechanism and characteristics In conclusion,our data in the study show that the new mechanical design of suspensions not only could realize adjusting terrain clearance and static vehicle pose,but also had an ideal stiffness that could realize a semi-active suspension function through adjusting suspension's stiffness.Therefore it can bequite suitable for off-road wheeled vehicles and military wheeled vehicles.
文摘由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中的接触传感器计量数据抗干扰处理,并通过动态选取阈值的方法,对经过小波变换后的数据去除噪声。使用低功耗自适应集簇分层型(low energy adaptive clustering hierarchy,LEACH)协议分簇代替传统的B-MAC协议;根据簇内监测值,引入阈值分析方法获取传感器计量指标,并将其作为判定依据进行误差检测,根据计量指标的变化情况判断是否存在计量误差。实验结果表明,所提方法可以准确且有效检测出机械电表接触传感器计量误差,解决DCS中机械电表的运行隐患问题。