While soils are as essential to human society as air and water,soil degradation has not received nearly as much attention as the threats to these other elements.On the map of water erosion of Europe,Southern Europe is...While soils are as essential to human society as air and water,soil degradation has not received nearly as much attention as the threats to these other elements.On the map of water erosion of Europe,Southern Europe is red"colored".Erosion in the Balkan countries,through both on and offsite effects is a major cause of soil and water degradation.This paper compares erosion control works in several countries from the Balkan region(Macedonia,Serbia,and Bulgaria).The basis for comparative analyses was various country reports as well as available published papers.Quantitative method-text analyze method was used for these study.Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes.Over the history of these countries,people who settled this region used the available natural resources to fill their needs(tree cutting,incorrect plugging,overgrazing),which contributed to soil erosion.Organized erosion control works in the Balkans started in the beginning of the 20th century(1905 in Bulgaria).The highest intensity of erosion control works were carried out during the period 1945-1990.Various erosion control works were launched.Bulgaria had a large anti-erosion afforestation,almost 1 million ha.Bulgaria's ecological river restoration approach has been in use for almost 50 years.Serbia contributed significant erosion and torrent control works on hilly agricultural areas.Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia.A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.展开更多
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects...This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.展开更多
The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are...The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.展开更多
Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts ...Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts on traffic operations are magnified when project durations are extended. Conventionally, work zone traffic control plans are developed to address work zone impacts. This study evaluated various merge control strategies at interstate work zones peak and off-peak traffic conditions and summarized related impacts. A comprehensive microscopic simulation model was developed in full consideration of driver/vehicle behavior at work zones. The analysis of simulation results revealed that merge control strategies, when implemented during peak and off-peak conditions, can preserve the level of service and provide favorable mobility, safety, and environmental impacts. In addition, results indicate that transportation agencies’ practice of scheduling work zone activities during the off-peak may not be the most optimum approach. Overall, the findings of this study highlight the need for evaluation of work zone scheduling practices in full consideration of agency, user, and project costs.展开更多
The intrinsic neural timescale(INT)provides temporal windows in brain activity that process information of different durations,crucial for the integration and segregation of external inputs and ultimately shaping cogn...The intrinsic neural timescale(INT)provides temporal windows in brain activity that process information of different durations,crucial for the integration and segregation of external inputs and ultimately shaping cognition and behavior.Recent research has uncovered a pronounced INT hierarchy along the adult hippocampus's longaxis.Yet,the development of INT organization within the hippocampus—particularly the pattern of its hierarchical structure and its impact on cognitive development—has not been thoroughly investigated in youth.Here,we discovered that the INT distribution in youth presents a distinct hierarchical structure along both posterioranterior and proximal-distal axes of the hippocampus.Strikingly,this hierarchical structure correlates signifi-cantly with the first principal gradient of the hippocampal-cortical functional connectome and the thickness of hippocampal grey matter.Furthermore,we observed notable changes in the hippocampal INT landscape during youth,characterized by a general narrowing of timescales,alongside dedifferentiation along the hippocampal organizational axes.These maturational changes significantly link to improvements in inhibitory control and working memory performance.Collectively,our findings reveal the developmental patterns of temporal integration and segregation hierarchies within hippocampus,and highlights the profound significance of INT as a neural underpinning that orchestrates cognitive growth.展开更多
Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was t...Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was to assess the intensity of lead exposures based on commonly used air velocities inside field containment structures during abrasive blasting and vacuuming. Exposures were assessed over 14 days from April to July 2021 at a tainter gate and bridge lead paint removal project. Personal air samples, skin wipes, air velocity readings, and blood lead samples were collected. The geometric mean (GM) lead exposure for abrasive blasters and vacuumers was ≥4 × the OSHA Lead Permissible Exposure Limit (PEL) of 50 μg/m<sup>3</sup>. There was high variability in the personal lead exposures (Geometric standard deviation (GSD) 4.0 - 5.0). The GM hand wipe exposures exceeded a Dermal PEL of 500 μg/wipe (abrasive blaster 564 μg/wipe and vacuumer 754 μg/wipe). Residual lead was measured on workers’ hands in 67% of the post hand washing samples. Air velocities measured inside of the field containments ranged from 107 feet per minute to 229 feet per minute. The effect of air velocity on the concentration of lead on workers’ hands after work (F = 0.58, p = 0.35) and airborne lead concentration was not significant (F = 0.36, p = 0.48). Six of the eight workers’ blood lead levels increased after exposure to lead. There was a non-statistically significant relationship between lead remaining on workers’ hands after handwashing and an increase in blood lead level. This is the first study that assessed both ventilation flow rates used in the industrial painting industry and measurements of airborne and dermal (hands) lead exposures. For the projects evaluated, the collected exposure data indicate that air velocities frequently used in the industrial painting industry to ventilate field containment structures did not tend to prevent an increase in worker blood lead and were ineffective for adequately controlling elevated concentrations of airborne lead and preventing contact with workers’ hands.展开更多
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin...Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.展开更多
文摘While soils are as essential to human society as air and water,soil degradation has not received nearly as much attention as the threats to these other elements.On the map of water erosion of Europe,Southern Europe is red"colored".Erosion in the Balkan countries,through both on and offsite effects is a major cause of soil and water degradation.This paper compares erosion control works in several countries from the Balkan region(Macedonia,Serbia,and Bulgaria).The basis for comparative analyses was various country reports as well as available published papers.Quantitative method-text analyze method was used for these study.Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes.Over the history of these countries,people who settled this region used the available natural resources to fill their needs(tree cutting,incorrect plugging,overgrazing),which contributed to soil erosion.Organized erosion control works in the Balkans started in the beginning of the 20th century(1905 in Bulgaria).The highest intensity of erosion control works were carried out during the period 1945-1990.Various erosion control works were launched.Bulgaria had a large anti-erosion afforestation,almost 1 million ha.Bulgaria's ecological river restoration approach has been in use for almost 50 years.Serbia contributed significant erosion and torrent control works on hilly agricultural areas.Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia.A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.
基金This work has been supported by the National Key Research and Development Program(Grant No.2017YFC0603000)which was jointly completed by the Coal Mining Research Branch of CCRI,China University of Mining and Technology(Xuzhou and Beijing),Henan Polytechnic UniversityXinji Energy Company Limited of China Coal Energy Group.This work was also supported by the National Natural Science Foundation of China(Grant No.51927807)。
文摘This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.
文摘The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.
文摘Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts on traffic operations are magnified when project durations are extended. Conventionally, work zone traffic control plans are developed to address work zone impacts. This study evaluated various merge control strategies at interstate work zones peak and off-peak traffic conditions and summarized related impacts. A comprehensive microscopic simulation model was developed in full consideration of driver/vehicle behavior at work zones. The analysis of simulation results revealed that merge control strategies, when implemented during peak and off-peak conditions, can preserve the level of service and provide favorable mobility, safety, and environmental impacts. In addition, results indicate that transportation agencies’ practice of scheduling work zone activities during the off-peak may not be the most optimum approach. Overall, the findings of this study highlight the need for evaluation of work zone scheduling practices in full consideration of agency, user, and project costs.
基金Shuyu Li is supported by the National Natural Science Foundation of China(32271146)the Startup Funds for Top-notch Talents at Beijing Normal University。
文摘The intrinsic neural timescale(INT)provides temporal windows in brain activity that process information of different durations,crucial for the integration and segregation of external inputs and ultimately shaping cognition and behavior.Recent research has uncovered a pronounced INT hierarchy along the adult hippocampus's longaxis.Yet,the development of INT organization within the hippocampus—particularly the pattern of its hierarchical structure and its impact on cognitive development—has not been thoroughly investigated in youth.Here,we discovered that the INT distribution in youth presents a distinct hierarchical structure along both posterioranterior and proximal-distal axes of the hippocampus.Strikingly,this hierarchical structure correlates signifi-cantly with the first principal gradient of the hippocampal-cortical functional connectome and the thickness of hippocampal grey matter.Furthermore,we observed notable changes in the hippocampal INT landscape during youth,characterized by a general narrowing of timescales,alongside dedifferentiation along the hippocampal organizational axes.These maturational changes significantly link to improvements in inhibitory control and working memory performance.Collectively,our findings reveal the developmental patterns of temporal integration and segregation hierarchies within hippocampus,and highlights the profound significance of INT as a neural underpinning that orchestrates cognitive growth.
文摘Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was to assess the intensity of lead exposures based on commonly used air velocities inside field containment structures during abrasive blasting and vacuuming. Exposures were assessed over 14 days from April to July 2021 at a tainter gate and bridge lead paint removal project. Personal air samples, skin wipes, air velocity readings, and blood lead samples were collected. The geometric mean (GM) lead exposure for abrasive blasters and vacuumers was ≥4 × the OSHA Lead Permissible Exposure Limit (PEL) of 50 μg/m<sup>3</sup>. There was high variability in the personal lead exposures (Geometric standard deviation (GSD) 4.0 - 5.0). The GM hand wipe exposures exceeded a Dermal PEL of 500 μg/wipe (abrasive blaster 564 μg/wipe and vacuumer 754 μg/wipe). Residual lead was measured on workers’ hands in 67% of the post hand washing samples. Air velocities measured inside of the field containments ranged from 107 feet per minute to 229 feet per minute. The effect of air velocity on the concentration of lead on workers’ hands after work (F = 0.58, p = 0.35) and airborne lead concentration was not significant (F = 0.36, p = 0.48). Six of the eight workers’ blood lead levels increased after exposure to lead. There was a non-statistically significant relationship between lead remaining on workers’ hands after handwashing and an increase in blood lead level. This is the first study that assessed both ventilation flow rates used in the industrial painting industry and measurements of airborne and dermal (hands) lead exposures. For the projects evaluated, the collected exposure data indicate that air velocities frequently used in the industrial painting industry to ventilate field containment structures did not tend to prevent an increase in worker blood lead and were ineffective for adequately controlling elevated concentrations of airborne lead and preventing contact with workers’ hands.
基金the French Research Network Me Ge (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340, 2008e2015) for having supported this work
文摘Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.