In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform...Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.展开更多
In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretizati...In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.展开更多
This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the slid...This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.展开更多
A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which i...A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
This paper, probing into heavy metal control in domestic rubbish by source screening and nutrient element analysis, revealed the feasibility of source control of heavy metals and the suitability of rubbish as turfgras...This paper, probing into heavy metal control in domestic rubbish by source screening and nutrient element analysis, revealed the feasibility of source control of heavy metals and the suitability of rubbish as turfgrass medium. Heavy metals in domestic rubbish were controlled by source screening before composting. The study consisted of a control with garden soil. The contents of main mineral elements and heavy metals in rubbish compost and control were determined by the method of ICP-AES. The results showed that heavy metal concentrations in rubbish were lower than those in garden soil, and little difference occurred between rubbish and garden soil in main mineral element concentrations. Based on this, it was concluded that rubbish compost was favorable for using as turfgrass medium and heavy metal control in rubbish by source screening was effective.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ...In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.展开更多
Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the...Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the runout table for effective control. Based on the principles of element tracking and tracking strategies for variable rolling speed and constant rolling speed, a simple diagonal tracking method for an existing hot strip mill was proposed and tested. The test results show that the proposed strategies are effective for improving tracking control.展开更多
Immersed tunnel is an important part of the Hong Kong–Zhuhai–Macao Bridge(HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide ...Immersed tunnel is an important part of the Hong Kong–Zhuhai–Macao Bridge(HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.展开更多
This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstruc...This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain fo...The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole-Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field.展开更多
Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data ...Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data for the detection of DHIs, new methods have been investigated. Marine controlled source electromagnet (MCSEM) or Sea bed logging (SBL) is new method for the detection of deep target hydrocarbon reservoir. Sea bed logging has also the potential to reduce the risks of DHIs in deep sea environment. Modelling of real sea environment helps to reduce the further risks before drilling the oil wells. 3D electromagnetic (EM) modelling of seabed logging requires more accurate methods for the detection of hydrocarbon reservoir. Finite element method (FEM) is chosen for the modelling of seabed logging to get more precise EM response from hydrocarbon reservoir below 4000 m from seabed. FEM allows to investigate the total electric and magnetic fields instead of scattered electric and magnetic fields, which shows accurate and precise resistivity contrast below the seabed. From the modelling results, It was investigated that Hz field shows higher magni- tude with 342% than the Ex field. It was observed that 0.125 Hz frequency can be able to show better resistivity contrast of Hz field (31.30%) and Ex field (16.49%) at target depth of 1000 m below seafloor for our proposed model. Hz and Ex field delineation was found to decrease as target depth increased from 1000 m to 4000 m. At the target depth of 4000 m, no field delineation response was seen from the current electromagnetic (EM) antenna used by the industry. New EM antenna has been used to see the EM response for deep target hydrocarbon detection. It was investigated that novel EM antenna shows better delineation at 4000 m target depth for Ex and Hz field up to 10.3% and 15.1% respectively. Novel EM antenna also shows better Hz phase response (128.4%) than the Ex phase response (38.3%) at the target depth of 4000 m below the seafloor.展开更多
The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus rol...The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus roll system in 2250 mm hot rolling mill. Comparing and analyzing different influence of working factors on control characteristic, the shape control characteristic of CVCplus roll system in its whole work time is studied, and the cause is analyzed and the difference of the roll gap curve and crown adjustable area in early and latter work time is compared. The outcome has crucial meaning in both theory and production.展开更多
As an important unconventional resource, oil shale has received widespread attention. The oil shale of the Chang 7 oil layer from Triassic Yanchang Formation in Ordos Basin represents the typical lacustrine oil shale ...As an important unconventional resource, oil shale has received widespread attention. The oil shale of the Chang 7 oil layer from Triassic Yanchang Formation in Ordos Basin represents the typical lacustrine oil shale in China. Based on analyzing trace elements and oil yield from boreholes samples, characteristics and paleo-sedi- mentary environments of oil shale and relationship between paleo-sedimentary environment and oil yield were studied. With favorable quality, oil yield of oil shale varies from 1.4% to 9.1%. Geochemical data indicate that the paleo-redox condition of oil shale's reducing condition from analyses of V/Cr, V/(V + Ni), U/Th, δU, and authi genic uranium. Equivalent Boron, Sp, and Sr/Ba illustrate that paleosalinity of oil shale is dominated by fresh water. The paleoclimate of oil shale is warm and humid by calculating the chemical index of alteration and Sr/Cu. Fe/Ti and (Fe + Mn)/Ti all explain that there were hot water activities during the sedimentary period of oil shale. In terms of Zr/Rb, paleohydrodynamics of oil shale is weak. By means of Co abundance and U/Th, paleo-water-depth of oil shale is from 17.30 to 157.26 m, reflecting sedimentary environment which is mainly in semi deep-deep lake facies. Correlation analyses between oil yield and six paleoenvironmental factors show that the oil yield of oil shale is mainly controlled by paleo-redox conditions, paleoclimate, hot water activities, and depth of water.Paleosalinity and paleohydrodynamics have an inconspicuous influence on oil yield.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
In recent years and according to modem trans- portation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles ...In recent years and according to modem trans- portation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezo- electric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demon- strated through the state space equations and its effect on modal coefficient.展开更多
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
基金supported by the National Natural Science Foundation of China(11927803A020414).
文摘Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.
文摘In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.
文摘This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.
基金The National Natural Science Foundation of China (60742117)
文摘A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
基金NationalNaturalScienceFoundation (59878033)Tianjin Science and Technology Developm entProgram (043100611).
文摘This paper, probing into heavy metal control in domestic rubbish by source screening and nutrient element analysis, revealed the feasibility of source control of heavy metals and the suitability of rubbish as turfgrass medium. Heavy metals in domestic rubbish were controlled by source screening before composting. The study consisted of a control with garden soil. The contents of main mineral elements and heavy metals in rubbish compost and control were determined by the method of ICP-AES. The results showed that heavy metal concentrations in rubbish were lower than those in garden soil, and little difference occurred between rubbish and garden soil in main mineral element concentrations. Based on this, it was concluded that rubbish compost was favorable for using as turfgrass medium and heavy metal control in rubbish by source screening was effective.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
基金partially supported by National Natura Science Foundation of China (62350710214, U23A20325)Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)。
文摘In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.
文摘Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the runout table for effective control. Based on the principles of element tracking and tracking strategies for variable rolling speed and constant rolling speed, a simple diagonal tracking method for an existing hot strip mill was proposed and tested. The test results show that the proposed strategies are effective for improving tracking control.
基金financially supported by the Ministry of Education of Humanities and Social Science Project(Grant Nos.15YJC630145 and 15YJC630059)the Natural Science Foundation of Shanghai Science and Technology Committee(Grant No.15ZR1420200)
文摘Immersed tunnel is an important part of the Hong Kong–Zhuhai–Macao Bridge(HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.
基金Iranian Offshore OilCompany (IOOC) for financial support of this work
文摘This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金This work was supported by the National Natural Science Foundation of China (No. 41304094) and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA09A20107).
文摘The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole-Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field.
文摘Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data for the detection of DHIs, new methods have been investigated. Marine controlled source electromagnet (MCSEM) or Sea bed logging (SBL) is new method for the detection of deep target hydrocarbon reservoir. Sea bed logging has also the potential to reduce the risks of DHIs in deep sea environment. Modelling of real sea environment helps to reduce the further risks before drilling the oil wells. 3D electromagnetic (EM) modelling of seabed logging requires more accurate methods for the detection of hydrocarbon reservoir. Finite element method (FEM) is chosen for the modelling of seabed logging to get more precise EM response from hydrocarbon reservoir below 4000 m from seabed. FEM allows to investigate the total electric and magnetic fields instead of scattered electric and magnetic fields, which shows accurate and precise resistivity contrast below the seabed. From the modelling results, It was investigated that Hz field shows higher magni- tude with 342% than the Ex field. It was observed that 0.125 Hz frequency can be able to show better resistivity contrast of Hz field (31.30%) and Ex field (16.49%) at target depth of 1000 m below seafloor for our proposed model. Hz and Ex field delineation was found to decrease as target depth increased from 1000 m to 4000 m. At the target depth of 4000 m, no field delineation response was seen from the current electromagnetic (EM) antenna used by the industry. New EM antenna has been used to see the EM response for deep target hydrocarbon detection. It was investigated that novel EM antenna shows better delineation at 4000 m target depth for Ex and Hz field up to 10.3% and 15.1% respectively. Novel EM antenna also shows better Hz phase response (128.4%) than the Ex phase response (38.3%) at the target depth of 4000 m below the seafloor.
文摘The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus roll system in 2250 mm hot rolling mill. Comparing and analyzing different influence of working factors on control characteristic, the shape control characteristic of CVCplus roll system in its whole work time is studied, and the cause is analyzed and the difference of the roll gap curve and crown adjustable area in early and latter work time is compared. The outcome has crucial meaning in both theory and production.
基金supported with funding from the National Natural Science Foundation of China (No. 41173055)the Fundamental Research Funds for the Central Universities (No. 310827172101)
文摘As an important unconventional resource, oil shale has received widespread attention. The oil shale of the Chang 7 oil layer from Triassic Yanchang Formation in Ordos Basin represents the typical lacustrine oil shale in China. Based on analyzing trace elements and oil yield from boreholes samples, characteristics and paleo-sedi- mentary environments of oil shale and relationship between paleo-sedimentary environment and oil yield were studied. With favorable quality, oil yield of oil shale varies from 1.4% to 9.1%. Geochemical data indicate that the paleo-redox condition of oil shale's reducing condition from analyses of V/Cr, V/(V + Ni), U/Th, δU, and authi genic uranium. Equivalent Boron, Sp, and Sr/Ba illustrate that paleosalinity of oil shale is dominated by fresh water. The paleoclimate of oil shale is warm and humid by calculating the chemical index of alteration and Sr/Cu. Fe/Ti and (Fe + Mn)/Ti all explain that there were hot water activities during the sedimentary period of oil shale. In terms of Zr/Rb, paleohydrodynamics of oil shale is weak. By means of Co abundance and U/Th, paleo-water-depth of oil shale is from 17.30 to 157.26 m, reflecting sedimentary environment which is mainly in semi deep-deep lake facies. Correlation analyses between oil yield and six paleoenvironmental factors show that the oil yield of oil shale is mainly controlled by paleo-redox conditions, paleoclimate, hot water activities, and depth of water.Paleosalinity and paleohydrodynamics have an inconspicuous influence on oil yield.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
文摘In recent years and according to modem trans- portation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezo- electric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demon- strated through the state space equations and its effect on modal coefficient.
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.