In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to ob...In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to obtain the existence and uniqueness exhibited by a non-negative solution of above mentioned model.A maximum principle helps to carefully verify the existence of the optimal control policy,and tangent-normal cone techniques help to obtain the optimal condition specific to control issue.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
The formation control of unmanned aerial vehicle(UAV)swarms is of significant importance in various fields such as transportation,emergency management,and environmental monitoring.However,the complex dynamics,nonlinea...The formation control of unmanned aerial vehicle(UAV)swarms is of significant importance in various fields such as transportation,emergency management,and environmental monitoring.However,the complex dynamics,nonlinearity,uncertainty,and interaction among agents make it a challenging problem.In this paper,we propose a distributed robust control strategy that uses only local information of UAVs to improve the stability and robustness of the formation system in uncertain environments.We establish a nominal control strategy based on position relations and a semi-definite programming model to obtain control gains.Additionally,we propose a robust control strategy under the rotation setΩto address the noise and disturbance in the system,ensuring that even when the rotation angles of the UAVs change,they still form a stable formation.Finally,we extend the proposed strategy to a quadrotor UAV system with high-order kinematic models and conduct simulation experiments to validate its effectiveness in resisting uncertain disturbances and achieving formation control.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature i...This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load,a method of power quality management of port distribution network is proposed.Base...In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load,a method of power quality management of port distribution network is proposed.Based on the objective function of the best power quality management effect and the smallest investment cost of the management device,the optimization model of power quality management in the distribution network after the large-scale application of large-capacity shore power is constructed.Based on the balance between the economic demand of distribution network resources optimization and power quality management capability,the power quality of distribution network is considered comprehensively.The proposed optimization algorithm for power quality management based on Matlab and OpenDSS is proposed and analyzed for port distribution networks.The simulation results show that the proposed optimizationmethod can maximize the power qualitymanagement capability of the port distribution network,and the proposed optimization algorithm has good convergence and global optimization finding capability.展开更多
In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in ord...In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in order to avoid directly solving a large-scale nonlinear optimization problem.We select photovoltaic inverters as agents to adjust system voltage in a distribution network,taking the reactive power output of inverters as action variables.An appropriate reward function is designed to guide the interaction between photovoltaic inverters and the distribution network environment.OPENDSS is used to output system node voltage and network loss.This method realizes the goal of optimal VVC in distribution network.The IEEE 13-bus three phase unbalanced distribution system is used to verify the effectiveness of the proposed algorithm.Simulation results demonstrate that the proposed method has excellent performance in voltage and reactive power regulation of a distribution network.展开更多
The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current in...The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.展开更多
Based on the contents of six heavy metal elements in surface sediments from coastal areas of Fujian Province,the distribution characteristics and controlling factors of six heavy metals in a bay-island-estuary system(...Based on the contents of six heavy metal elements in surface sediments from coastal areas of Fujian Province,the distribution characteristics and controlling factors of six heavy metals in a bay-island-estuary system(BIES)were studied.This paper focuses on the influence of the hydrodynamic environment,and systematically discusses how grain size compositions,chemical environment,tidal current,ocean circulation and human activities influence the distribution and transportation of the heavy metals.The results indicated that the distribution and migration of Cu,Pb,Zn and Cr elements were mainly controlled by natural factors such as regional geological background,grain size compositions,and tidal residual currents.In contrast,As and Hg was mainly affected by human factors such as agriculture and industrial manufacturing.In the BIES,where the chemical environment exerted limited influence,the accumulation and migration of heavy metals are mainly influenced by human activities and enhanced by estuary processes as well as the complex sedimentary dynamic environment caused by many bays and islands.展开更多
Nonparametric(distribution-free)control charts have been introduced in recent years when quality characteristics do not follow a specific distribution.When the sample selection is prohibitively expensive,we prefer ran...Nonparametric(distribution-free)control charts have been introduced in recent years when quality characteristics do not follow a specific distribution.When the sample selection is prohibitively expensive,we prefer ranked-set sampling over simple random sampling because ranked set sampling-based control charts outperform simple random sampling-based control charts.In this study,we proposed a nonparametric homogeneously weighted moving average based on theWilcoxon signed-rank test with ranked set sampling(NPHWMARSS)control chart for detecting shifts in the process location of a continuous and symmetric distribution.Monte Carlo simulations are used to obtain the run length characteristics to evaluate the performance of the proposed NPHWMARSS control chart.The proposed NPHWMARSS control chart’s performance is compared to that of parametric and nonparametric control charts.These control charts include the exponentially weighted moving average(EWMA)control chart,Wilcoxon signed-rank with simple random sampling based the nonparametric EWMA control chart,the nonparametric EWMA sign control chart,Wilcoxon signed-rank with ranked set sampling-based the nonparametric EWMA control chart,and the homogeneously weighted moving average control charts.The findings show that the proposed NPHWMARSS control chart performs better than its competitors,particularly for the small shifts.Finally,an example is presented to demonstrate how the proposed scheme can be implemented practically.展开更多
Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public...Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto...The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
基金Supported by the Natural Science Foundation of Ningxia(2023AAC03114)National Natural Science Foundation of China(72464026).
文摘In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to obtain the existence and uniqueness exhibited by a non-negative solution of above mentioned model.A maximum principle helps to carefully verify the existence of the optimal control policy,and tangent-normal cone techniques help to obtain the optimal condition specific to control issue.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Nos.52202391,U20A20155,and 52302397)the China Postdoctoral Science Foundation(No.2023M730173).
文摘The formation control of unmanned aerial vehicle(UAV)swarms is of significant importance in various fields such as transportation,emergency management,and environmental monitoring.However,the complex dynamics,nonlinearity,uncertainty,and interaction among agents make it a challenging problem.In this paper,we propose a distributed robust control strategy that uses only local information of UAVs to improve the stability and robustness of the formation system in uncertain environments.We establish a nominal control strategy based on position relations and a semi-definite programming model to obtain control gains.Additionally,we propose a robust control strategy under the rotation setΩto address the noise and disturbance in the system,ensuring that even when the rotation angles of the UAVs change,they still form a stable formation.Finally,we extend the proposed strategy to a quadrotor UAV system with high-order kinematic models and conduct simulation experiments to validate its effectiveness in resisting uncertain disturbances and achieving formation control.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002).
文摘This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load,a method of power quality management of port distribution network is proposed.Based on the objective function of the best power quality management effect and the smallest investment cost of the management device,the optimization model of power quality management in the distribution network after the large-scale application of large-capacity shore power is constructed.Based on the balance between the economic demand of distribution network resources optimization and power quality management capability,the power quality of distribution network is considered comprehensively.The proposed optimization algorithm for power quality management based on Matlab and OpenDSS is proposed and analyzed for port distribution networks.The simulation results show that the proposed optimizationmethod can maximize the power qualitymanagement capability of the port distribution network,and the proposed optimization algorithm has good convergence and global optimization finding capability.
基金supported by the Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.under Grant B311JY21000A。
文摘In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in order to avoid directly solving a large-scale nonlinear optimization problem.We select photovoltaic inverters as agents to adjust system voltage in a distribution network,taking the reactive power output of inverters as action variables.An appropriate reward function is designed to guide the interaction between photovoltaic inverters and the distribution network environment.OPENDSS is used to output system node voltage and network loss.This method realizes the goal of optimal VVC in distribution network.The IEEE 13-bus three phase unbalanced distribution system is used to verify the effectiveness of the proposed algorithm.Simulation results demonstrate that the proposed method has excellent performance in voltage and reactive power regulation of a distribution network.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(Grant No.SGSDJY00GPJS2100135).
文摘The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.
基金the Science and Technology Project of China Huaneng Group Co.,Ltd.,Study on the Development and Utilization of the Island Site of Xiapu Nuclear Power Plant(No.HNKJ20-H18)。
文摘Based on the contents of six heavy metal elements in surface sediments from coastal areas of Fujian Province,the distribution characteristics and controlling factors of six heavy metals in a bay-island-estuary system(BIES)were studied.This paper focuses on the influence of the hydrodynamic environment,and systematically discusses how grain size compositions,chemical environment,tidal current,ocean circulation and human activities influence the distribution and transportation of the heavy metals.The results indicated that the distribution and migration of Cu,Pb,Zn and Cr elements were mainly controlled by natural factors such as regional geological background,grain size compositions,and tidal residual currents.In contrast,As and Hg was mainly affected by human factors such as agriculture and industrial manufacturing.In the BIES,where the chemical environment exerted limited influence,the accumulation and migration of heavy metals are mainly influenced by human activities and enhanced by estuary processes as well as the complex sedimentary dynamic environment caused by many bays and islands.
基金Funds are available under the Grant No.RGP.2/132/43 at King Khalid University,Kingdom of Saudi Arabia.
文摘Nonparametric(distribution-free)control charts have been introduced in recent years when quality characteristics do not follow a specific distribution.When the sample selection is prohibitively expensive,we prefer ranked-set sampling over simple random sampling because ranked set sampling-based control charts outperform simple random sampling-based control charts.In this study,we proposed a nonparametric homogeneously weighted moving average based on theWilcoxon signed-rank test with ranked set sampling(NPHWMARSS)control chart for detecting shifts in the process location of a continuous and symmetric distribution.Monte Carlo simulations are used to obtain the run length characteristics to evaluate the performance of the proposed NPHWMARSS control chart.The proposed NPHWMARSS control chart’s performance is compared to that of parametric and nonparametric control charts.These control charts include the exponentially weighted moving average(EWMA)control chart,Wilcoxon signed-rank with simple random sampling based the nonparametric EWMA control chart,the nonparametric EWMA sign control chart,Wilcoxon signed-rank with ranked set sampling-based the nonparametric EWMA control chart,and the homogeneously weighted moving average control charts.The findings show that the proposed NPHWMARSS control chart performs better than its competitors,particularly for the small shifts.Finally,an example is presented to demonstrate how the proposed scheme can be implemented practically.
基金funded by State Grid Science&Technology Project“Research and Demonstration of Key Technologies on Electric-Heating Collaboration Cross-Network Mutual Supply for Typical Regional Clean Energy”,Grant Number 5400-202111575A-0-5-SF.
文摘Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金supported by the National Natural Science Foundation of China,Nos.82130037(to CH),81971122(to CH),82171323(to WL)the Natural Science Foundation of Jiangsu Province of China,No.BK20201113(to WL)。
文摘The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.