General nonlinear control systems are studied in this paper with the goal to transform them into the so-called controllability canonteal form via state transformation only. The conditions of transformability are given...General nonlinear control systems are studied in this paper with the goal to transform them into the so-called controllability canonteal form via state transformation only. The conditions of transformability are given for both single input and multiple input cases. Besides, by an algebraic approach the procedure for constructing the state transformation is established. This paper is formulated in the framework of calculus rather than differential geometry approach.展开更多
In this paper, we study the exact controllability of the nonlinear controlsystems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main...In this paper, we study the exact controllability of the nonlinear controlsystems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.展开更多
In this paper, we establish sufficient conditions for existence and controllability of nonlinear neutral evolution integroditferential systems in Banach spaces. The result is obtained by using the resolvent operators ...In this paper, we establish sufficient conditions for existence and controllability of nonlinear neutral evolution integroditferential systems in Banach spaces. The result is obtained by using the resolvent operators and fixed point analysis approach.展开更多
This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a ...This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.展开更多
A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system...A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. We will then discuss how approximations to these problems can be found computationally using finite difference methods and optimization. Examples will be presented in one, two and three dimensions.展开更多
In this paper, Lyapunov function method is used to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matri...In this paper, Lyapunov function method is used to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matrix inequality form are obtained for the general interval Lur'e type nonlinear control systems, thus the relationship between the stability of symmetrical interval matrix and the robust absolute stability of general interval Lur'e type nonlinear control systems is established.展开更多
This paper researches trajectory controllability of semilinear differential evolution equations with impulses and delay. The main techniques in our paper rely on the fixed point theorem and monotone operator theory. I...This paper researches trajectory controllability of semilinear differential evolution equations with impulses and delay. The main techniques in our paper rely on the fixed point theorem and monotone operator theory. In the end of the paper, an example is given to explain our main result.展开更多
This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,s...This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,sufficient conditions for nonlinear discrete systems to be controllable are presented.In addition,applications are given to illustrate main results.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
In this paper, we study the controllability of the nonlinear evolution systems. We establish the controllability results by using the monotone operator theory. No compactness assumptions are imposed in the main result...In this paper, we study the controllability of the nonlinear evolution systems. We establish the controllability results by using the monotone operator theory. No compactness assumptions are imposed in the main results. We present an example to illustrate our results.展开更多
In this paper, we investigate a class of affine nonlinear systems with a triangular-like structure and present its necessary and sufficient condition for global controllability, by using the techniques developed by Su...In this paper, we investigate a class of affine nonlinear systems with a triangular-like structure and present its necessary and sufficient condition for global controllability, by using the techniques developed by Sun Yimin and Guo Lei recently. Furthermore, we will give two examples to illustrate its application.展开更多
In this paper, we investigate the global controllability of a class of n-dimensional affine nonlinear systems with n- 1 controls and constant control matrix. A necessary and sufficient condition for its global control...In this paper, we investigate the global controllability of a class of n-dimensional affine nonlinear systems with n- 1 controls and constant control matrix. A necessary and sufficient condition for its global controllability has been obtained by using the methods recently developed. Furthermore, we generalize the above result to a class of affine nonlinear systems with a block-triangular-like structure. Finally, we will give three examples to show the applications of our results.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input. This result is obtained by introducing a new met...In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input. This result is obtained by introducing a new method in the analysis, which is based on the use of some basic results in planar topology and in the geometric theory of ordinary differential equations.展开更多
Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and dire...Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.展开更多
Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior lear...Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.展开更多
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a...In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.展开更多
In this paper, a necessary and sufficient condition of the global controllability for a class of low dimensional polynomial affine nonlinear systems with special structure is obtained. The condition is imposed on the ...In this paper, a necessary and sufficient condition of the global controllability for a class of low dimensional polynomial affine nonlinear systems with special structure is obtained. The condition is imposed on the coefficients of the system only and the methods are based on Green's formula and the trajectory analysis of planar linear system. Furthermore, I point out that the global controllability does not hold for the corresponding high dimensional polynomial system.展开更多
In this paper, we study the controllability results for the nonlinear impulsive integrodifferential evolution systems with time-varying delays in Banach spaces. The sufficient conditions of exact controllability is pr...In this paper, we study the controllability results for the nonlinear impulsive integrodifferential evolution systems with time-varying delays in Banach spaces. The sufficient conditions of exact controllability is proved under without assuming the compactness of the evolution operator. The results are obtained by using the semigroup theory and the Schafer fixed point theorem.展开更多
文摘General nonlinear control systems are studied in this paper with the goal to transform them into the so-called controllability canonteal form via state transformation only. The conditions of transformability are given for both single input and multiple input cases. Besides, by an algebraic approach the procedure for constructing the state transformation is established. This paper is formulated in the framework of calculus rather than differential geometry approach.
文摘In this paper, we study the exact controllability of the nonlinear controlsystems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.
文摘In this paper, we establish sufficient conditions for existence and controllability of nonlinear neutral evolution integroditferential systems in Banach spaces. The result is obtained by using the resolvent operators and fixed point analysis approach.
基金supported by the National Natural Science Foundation of China (60774011)the Natural Science Foundation of Fujian Province (2008J0026)
文摘This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.
文摘A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. We will then discuss how approximations to these problems can be found computationally using finite difference methods and optimization. Examples will be presented in one, two and three dimensions.
基金This project was supported by the National Natural Science Foundation of China (No. 69934030)the Foundation for University
文摘In this paper, Lyapunov function method is used to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matrix inequality form are obtained for the general interval Lur'e type nonlinear control systems, thus the relationship between the stability of symmetrical interval matrix and the robust absolute stability of general interval Lur'e type nonlinear control systems is established.
文摘This paper researches trajectory controllability of semilinear differential evolution equations with impulses and delay. The main techniques in our paper rely on the fixed point theorem and monotone operator theory. In the end of the paper, an example is given to explain our main result.
基金supported by National Natural Science Foundation of China (grant No.41874132)supported by National Natural Science Foundation of China (grant No.11201173)+3 种基金National Natural Science Foundation of China (grant No.11171132,grant No.11571065)Science and Technology Developing Plan of Jilin Province (grant No.20180101220JC)supported by National Basic Research Program of China (grant No.2013CB834100)Jilin DRC (grant No.2017C028-1)。
文摘This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,sufficient conditions for nonlinear discrete systems to be controllable are presented.In addition,applications are given to illustrate main results.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
文摘In this paper, we study the controllability of the nonlinear evolution systems. We establish the controllability results by using the monotone operator theory. No compactness assumptions are imposed in the main results. We present an example to illustrate our results.
基金the National Natural Science Foundation of China (Grant Nos. 50525721, 60221301 and 60334040) China Postdoctoral Science Foundation
文摘In this paper, we investigate a class of affine nonlinear systems with a triangular-like structure and present its necessary and sufficient condition for global controllability, by using the techniques developed by Sun Yimin and Guo Lei recently. Furthermore, we will give two examples to illustrate its application.
基金The research was supported by the National Natural Science Foundation of China under Grant No. 50525721, 60221301, and 60334040, and China Postdoctoral Science Foundation under Grant No. 20060390470. Acknowledgment The authors would like to thank Prof. Lei GUO for his very valuable discussions and suggestions.
文摘In this paper, we investigate the global controllability of a class of n-dimensional affine nonlinear systems with n- 1 controls and constant control matrix. A necessary and sufficient condition for its global controllability has been obtained by using the methods recently developed. Furthermore, we generalize the above result to a class of affine nonlinear systems with a block-triangular-like structure. Finally, we will give three examples to show the applications of our results.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(Grant No.6022130l).
文摘In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input. This result is obtained by introducing a new method in the analysis, which is based on the use of some basic results in planar topology and in the geometric theory of ordinary differential equations.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project(funded by Yancheng Science and Technology Association)The 2024 Yancheng Key Research and Development Plan(Social Development)projects include“Research and Application of Multi-Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment.”。
文摘Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.
基金supported by the Royal Academy of Engineering and the Office of the Chie Science Adviser for National Security under the UK Intelligence Community Postdoctoral Research Fellowship programme。
文摘Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach.
基金supported in part by the National Natural Science Foundation of China(U1804147,61833001,61873139,61573129)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2)the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)。
文摘In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.
基金supported by the Natural Science Foundation of China(No.60804008)the Ph.D.Programs Foundation of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities
文摘In this paper, a necessary and sufficient condition of the global controllability for a class of low dimensional polynomial affine nonlinear systems with special structure is obtained. The condition is imposed on the coefficients of the system only and the methods are based on Green's formula and the trajectory analysis of planar linear system. Furthermore, I point out that the global controllability does not hold for the corresponding high dimensional polynomial system.
文摘In this paper, we study the controllability results for the nonlinear impulsive integrodifferential evolution systems with time-varying delays in Banach spaces. The sufficient conditions of exact controllability is proved under without assuming the compactness of the evolution operator. The results are obtained by using the semigroup theory and the Schafer fixed point theorem.