期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller
1
作者 He Wang Xiangsheng Xu +1 位作者 Guanye Shen Bian Jing 《Energy Engineering》 EI 2023年第10期2251-2272,共22页
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D... There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure. 展开更多
关键词 dc power flow controller model predictive control modular multi-level converter control strategy dynamic performance
下载PDF
A DC Current Flow Controller for Meshed Modular Multilevel Converter Multiterminal HVDC Grids 被引量:41
2
作者 Na Deng Puyu Wang +2 位作者 Xiao-Ping Zhang Guangfu Tang Junzheng Cao 《CSEE Journal of Power and Energy Systems》 SCIE 2015年第1期43-51,共9页
This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)g... This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS). 展开更多
关键词 Capacitor voltage control dc branch current control dc current flow controller HVdc transmission meshed multi-terminal HVdc grid modular multilevel converter
原文传递
Analysis and Control of Modular Multi-terminal DC Power Flow Controller with Fault Current Limiting Function 被引量:3
3
作者 Qianming Xu Xinyu Huang +4 位作者 Xu Chu Mingshen Li Zhikang Shuai Chunming Tu Josep M.Guerrero 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1375-1385,共11页
In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPF... In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPFC)with fault current limiting function.The topology structure,operation principle,and equivalent circuit of MM-DCPFC are introduced,and such a structure has the advantages of modularity and scalability.The power balance mechanism is studied and a hierarchical power balance control strategy is proposed.The results show that MM-DCPFC can achieve internal power exchange,which avoids the use of external power supply.The fault characteristics of MM-DCPFC are analyzed,fault current limiting and self-protection methods are proposed,and the factors affecting the current limiting capability are studied.The simulation models are established in PLECS,and the simulation results verify the effectiveness of MM-DCPFC in power flow control,fault current limiting,and scalability.In addition,a prototype is developed to validate the function and control method of MM-DCPFC. 展开更多
关键词 Fault current limiting multi-terminal high volt-age direct current(MTdc)grid power balance dc power flow controller
原文传递
Nyquist Stability Analysis and Capacitance Selection for DC Current Flow Controllers in Meshed Multi-terminal HVDC Grids 被引量:4
4
作者 Puyu Wang Shihua Feng +2 位作者 Pengcheng Liu Ningqiang Jiang Xiao-Ping Zhang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第1期114-127,共14页
Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation ... Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications. 展开更多
关键词 Capacitance selection method control ranges dc current flow controller(CFC) meshed multi-terminal HVdc(M2Tdc)grid Nyquist stability analysis small-signal modelling switching frequencies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部