In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machine...With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.展开更多
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provi...First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic...Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.展开更多
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i...Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.展开更多
The entry of collective construction land for business purposes is an important measure for deepening the reform of the rural land system,promoting the flow of urban and rural factors,and realizing rural revitalizatio...The entry of collective construction land for business purposes is an important measure for deepening the reform of the rural land system,promoting the flow of urban and rural factors,and realizing rural revitalization.Since the production of the first batch of pilot projects in 2015,33 county-level cities have participated in the pilot policy by 2023.Deqing County,Zhejiang Province,as the first area to participate in the pilot project,aims to achieve more fruitful results.This paper first examines how promoting farmers’income through the market entry of agricultural land can be achieved,then uses the synthetic control method to quantitatively study the impact of collective operational construction land on farmers’income using panel data from 2011 to 2019,and finally proposes relevant suggestions from the perspective of system reform.展开更多
Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improv...Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improvement of prod?uct quality and e ciency, the precision of the tension control system is constantly improving. In this paper, a novel tension control method is proposed, which can regulate the fiber tension and transport speed of the winding process by governing the outputs of three di erent driven rollers(the torque of the unwind roll, the torque of the magnetic powder brake roller, and the speed of the master speed roller) in three levels. The mechanical structures and dynamic models of the driven rollers and idle rollers are established by considering the time?varying features of the roller radius and inertia. Moreover, the influence of parameters and speed variation on fiber tension is investigated using the increment model. Subsequently, the control method is proposed by applying fiber tension in three levels accord?ing to the features of the three driven rollers. An adaptive fuzzy controller is designed for tuning the PID parameters online to control the speed of the master speed roller. Simulation is conducted for verifying the performance and sta?bility of the proposed tension control method by comparing with those of the conventional PID control method. The result reveals that the proposed method outperforms the conventional method. Finally, an experimental platform is constructed, and the proposed system is applied to a winding machine. The performance and stability of the tension control system are demonstrated via a series of experiments using carbon fiber under di erent reference speeds and tensions. This paper proposes a novel tension control method to regulate the fiber tension and transport speed.展开更多
Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed ...Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed in this paper.By this method,the sequence of collapse of overlying strata and the direction of propagation of strata movement are changed,the extent of roof-side deformation thereby is lessened,and boundary angle of roof-side subsidence is reduced by 5°-10°.The mechanism of this mining method for control of strata movement has been evidenced by numerical simulation and experiments with similarity materials.A subsidence prediction model based on the variation of mining influence propagation angle can be used to evaluate the surface movement and deformation of the mining method.The application of the method in No.3 Mine in Yaojie mining area has yielded the expected result.展开更多
The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model i...The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model is established to characterize the relation between control current of coil and deformation of tool rod. A series of tests on deformation of giant magnetostrictive tool bar were done and the results validated the feasibility of the principle. The methods of measuring magne- tostrictive coefficient of rare earth GMM were analyzed. The measuring device with the bias field and prestress was designed. A series of experiments were done to test magnetostrictive coefficient. Experimental results supplied accurate characteristic pa- rameter for designing application device of GMM. The constitution of the developed control system made up of displacement detection and temperature detection for thermal deformation compensation was also introduced. The developed machine tool for boring the non-cylinder pin hole of piston has the micron order accuracy. This control method can be applied to other areas for machining precision or complex parts.展开更多
Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to th...Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.展开更多
A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould f...A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould filling process wasconducted. It was compared with exact solutions and the experimental results, and good agreements were observed.Numerical and experimental comparisons with the conventional contour mathod were also carried out, and it showedthat TIM could enhance the local accuracy of flow front solutions with respect to the contour method when mergingflow fronts and resin approaching the mold wall were involved.展开更多
In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First,...In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.展开更多
A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control meth...A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control method and its feature are concisely explained.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse...A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse theory a compound inverse control method is proposed. The controller has also two parts: a linear controller and a nonlinear neural network controller. The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated .based on the Lyapunov theory. Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.展开更多
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian co...In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
基金This research was supported financially by the China Postdoctoral Science Foundation,the National Natural Science Foundation of China(Grant No.51705132)the Young Backbone Teacher Training Program in Henan University of Technology,the Education Department of Henan Province Natural Science Project(Grant No.21A460006)the Natural Science Project of Henan Provincial Department of Science and Technology(Grant No.222102220088).
文摘With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
文摘First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
文摘Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
基金Geological and Mineral Resources Survey of Metallogenic Belt in the Middle and Lower Reaches of Yangtze River,Grant/Award Number:1212011220540Jiangsu 1:50000 Dingsanwei,Kaishan Island,Yangqiao,Chenjiagang,New Huaihe Estuary,Xiangshui Estuary,Dayou,Xiaojie,DayuJian District,Grant/Award Numbers:Base[2012]02‐014‐009,Base[2013]01‐019‐002,Base[2014]01‐021‐003。
文摘Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.
文摘The entry of collective construction land for business purposes is an important measure for deepening the reform of the rural land system,promoting the flow of urban and rural factors,and realizing rural revitalization.Since the production of the first batch of pilot projects in 2015,33 county-level cities have participated in the pilot policy by 2023.Deqing County,Zhejiang Province,as the first area to participate in the pilot project,aims to achieve more fruitful results.This paper first examines how promoting farmers’income through the market entry of agricultural land can be achieved,then uses the synthetic control method to quantitatively study the impact of collective operational construction land on farmers’income using panel data from 2011 to 2019,and finally proposes relevant suggestions from the perspective of system reform.
基金Supported by National Natural Science Foundation of China(Grant No.51575018)
文摘Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improvement of prod?uct quality and e ciency, the precision of the tension control system is constantly improving. In this paper, a novel tension control method is proposed, which can regulate the fiber tension and transport speed of the winding process by governing the outputs of three di erent driven rollers(the torque of the unwind roll, the torque of the magnetic powder brake roller, and the speed of the master speed roller) in three levels. The mechanical structures and dynamic models of the driven rollers and idle rollers are established by considering the time?varying features of the roller radius and inertia. Moreover, the influence of parameters and speed variation on fiber tension is investigated using the increment model. Subsequently, the control method is proposed by applying fiber tension in three levels accord?ing to the features of the three driven rollers. An adaptive fuzzy controller is designed for tuning the PID parameters online to control the speed of the master speed roller. Simulation is conducted for verifying the performance and sta?bility of the proposed tension control method by comparing with those of the conventional PID control method. The result reveals that the proposed method outperforms the conventional method. Finally, an experimental platform is constructed, and the proposed system is applied to a winding machine. The performance and stability of the tension control system are demonstrated via a series of experiments using carbon fiber under di erent reference speeds and tensions. This paper proposes a novel tension control method to regulate the fiber tension and transport speed.
基金sponsored by the National Natural Science Foundation of China(Nos.51574242 and 5097412).
文摘Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed in this paper.By this method,the sequence of collapse of overlying strata and the direction of propagation of strata movement are changed,the extent of roof-side deformation thereby is lessened,and boundary angle of roof-side subsidence is reduced by 5°-10°.The mechanism of this mining method for control of strata movement has been evidenced by numerical simulation and experiments with similarity materials.A subsidence prediction model based on the variation of mining influence propagation angle can be used to evaluate the surface movement and deformation of the mining method.The application of the method in No.3 Mine in Yaojie mining area has yielded the expected result.
基金Project supported by the National Natural Science Foundation of China (No. 50575205) and the Natural Science Foundation of Zheji-ang Province (Nos. Y104243 and Y105686), China
文摘The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model is established to characterize the relation between control current of coil and deformation of tool rod. A series of tests on deformation of giant magnetostrictive tool bar were done and the results validated the feasibility of the principle. The methods of measuring magne- tostrictive coefficient of rare earth GMM were analyzed. The measuring device with the bias field and prestress was designed. A series of experiments were done to test magnetostrictive coefficient. Experimental results supplied accurate characteristic pa- rameter for designing application device of GMM. The constitution of the developed control system made up of displacement detection and temperature detection for thermal deformation compensation was also introduced. The developed machine tool for boring the non-cylinder pin hole of piston has the micron order accuracy. This control method can be applied to other areas for machining precision or complex parts.
基金the National Natural Science Foundation of China (50122155)
文摘Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.
基金This work is supported by the National Natural Science Foundation of China(No.10372027).
文摘A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould filling process wasconducted. It was compared with exact solutions and the experimental results, and good agreements were observed.Numerical and experimental comparisons with the conventional contour mathod were also carried out, and it showedthat TIM could enhance the local accuracy of flow front solutions with respect to the contour method when mergingflow fronts and resin approaching the mold wall were involved.
基金supported by National Natural Science Foundation of China(61573330)Chinese Academy of Sciences(CAS)the World Academy of Sciences(TWAS)
文摘In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.
文摘A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control method and its feature are concisely explained.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金This work was supported by National Natural Science Foundation of China (No .60374037) Natural Science and Technology Research Project of HebeiProvince (No .E2004000055) .
文摘A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse theory a compound inverse control method is proposed. The controller has also two parts: a linear controller and a nonlinear neural network controller. The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated .based on the Lyapunov theory. Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035 and 11171038)the Science Research Foundation of the Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102)
文摘In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.