Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent...Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere’s disease (MD) ...The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere’s disease (MD) and sudden sensorineural hearing loss (SSHL).Gelation occurred shortly after mixing dexamethasone-containing fibrinogen with thrombin.Dexamethasone was constantly released for at least 16 d at a stable level after 7d in protocol 1 (low-dose),while it was robustly released within 4 d and slowed afterward until 10 d in protocol 2(high-dose).There were significant differences among the time points in Protocol 2 (p<0.01,ANOVA),and the exponential model with the formula y=15.299*e~(-0.483*t) fits the association.The estimated concentration of dexamethasone released on 7 d in protocol 2 was slightly lower than that observed in protocol 1.The fibrin sealant is capable of constantly releasing dexamethasone with adjustable dynamics.Targeted and minimally invasive administration of the material can be achieved in the clinic by sequential injections of the fluids using a soft-tipped catheter.展开更多
A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit...A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.展开更多
As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties i...As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties including hydraulic permeability and diffusional permeability can be dramatically controlled or adjusted self-regulatively in response to small chemical and/or physical stimuli in their environments. Such environmental stimuli-responsive smart membranes could find myriad applications in numerous fields ranging from controlled release to separations. Here the trans-membrane mass-transfer and membrane separation is introduced as the beginning to initiate the requirement of smart membranes, and then bio-inspired design of environmental stimuli-responsive smart membranes and four essential elements for smart membranes are introduced and discussed. Next, smart membrane types and their applications as smart tools for controllable mass-transfer in controlled release and separations are reviewed. The research tooics in the near future are also suggested.展开更多
The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery...The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings.展开更多
Citral(Eo)exhibits excellent fungicidal activities.However,it is difficult to maintain long-term fungicidal activity due to its strong volatility.Herein,a controlled-release strategy by using biomass-derived porous ca...Citral(Eo)exhibits excellent fungicidal activities.However,it is difficult to maintain long-term fungicidal activity due to its strong volatility.Herein,a controlled-release strategy by using biomass-derived porous carbon(BC)was developed to overcome the drawback of Eo.New composite materials were prepared by loading Eo on tea stem porous carbon(BC@Eo),and their controlled-release fungicidal activity against Exobasidium vexans was assessed.BC with a large specific surface area of 1001.6 m2/g and mesoporous structure was fabricated through carbonization tempera-ture of 700℃.The BC@Eo materials were characterized using Fourier-transform infrared spectroscopy and X-ray powder diffraction.The results suggested that chemical and physical interactions occurred in BC@Eo.The Eo release profile suggested a biphasic pattern with an initial fast release on days 1–14 and a subsequent controlled phase on days 14–30.The in vitro cumulative release percentage of Eo from BC@Eo was 51%during one month,and this result was significantly lower than that from free Eo(cumulative release percentage of Eo of 82%in one week).The anti-fungal activities of Eo and BC@Eo against E.vexans were determined using the inhibition zone method.The results indicated that Eo and BC@Eo formed large inhibition zones of 19.66±0.79 and 21.92±0.77 mm,respectively.The influence on the hyphal structure of E.vexans was observed by scanning electron microscopy on day 30.The hyphal structure of E.vexans treated with BC@Eo was more shrunken than that treated with Eo at 30 days,suggesting that BC@Eo prolongs the fungicidal activity against E.vexans.This study demonstrated that the encapsulation of Eo in BC for developing the BC@Eo materials could be a promising strategy to inhibit volatility and maintain the fungicidal activity of Eo and provide a potential alternative for the reuse of abundant tea biomass waste resources.展开更多
Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduce...Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea(CU). However, the crucial factors influencing the responses of NH3and N2O emissions to CRU relative to CU are still unclear. In this study, we evaluated the responses of NH3and N2O emissions to CRU based on collected field data with a meta-analysis. CRU reduced the NH3and N2O emissions by 32.7 and 25.0% compared with CU, respectively. According to subgroup analysis, CRU presented better mitigation of NH3and N2O emissions in soils with pH 6.5–7.5(–47.9 and –23.7%) relative to either pH<6.5(–28.5and –21.4%) or pH>7.5(–29.3 and –17.3%), and in the rice season(–34.8 and –29.1%) relative to the wheat season(–19.8 and –22.8%). The responses of NH3and N2O emissions to CRU increased from rainfed(–30.5 and –17.0%) to irrigated(–32.5 and –22.9%), and then to paddy(–34.8 and –29.1%) systems. In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen(TN);however, soil TN did not significantly affect the response of NH3volatilization. The reduction in NH3emission was greater in sandy-textured soil(–57.7%) relative to loam-textured(–32.9%) and clay-textured(–32.3%) soils, whereas soil texture did not affect N2O emission. Overall, CRU was a good option for reducing the NH3and N2O emissions relative to CU in agricultural production. This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE.展开更多
[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled rele...[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled release urea and ordinary urea,randomly arranged in blocks and repeated 3 times.[Results]The test results of field districts showed that different proportions of controlled release urea and conventional urea had different effects on peanut yield.On the basis of applying 50 kg/666.7 m^(2)of calcium superphosphate and 17 kg/666.7 m^(2)of potassium sulfate,13.34 kg/666.7 m^(2)of pure nitrogen was applied.The optimal ratio of controlled release urea to ordinary urea was 75:25,followed by 50:50.The output was 379.83 and 371.83 kg/666.7 m^(2),separately increased by 6.74%and 4.50%compared to the application of ordinary urea.[Conclusions]The combined application of controlled release urea and ordinary urea in peanuts can significantly increase peanut yield compared to just applying ordinary urea.展开更多
A long chain insect pheromone for subterranean termites, LC (Lignoceric Acid), was intercalated into the inorganic interlayer, ZLH (Zinc Layered Hydroxide), resulting in the formation of a new nanohybrid, labelled as ...A long chain insect pheromone for subterranean termites, LC (Lignoceric Acid), was intercalated into the inorganic interlayer, ZLH (Zinc Layered Hydroxide), resulting in the formation of a new nanohybrid, labelled as LCN (Lignocerate Nanohybrid). The formation of this inorganic-organic structure nanohybrid was synthesized by the co-precipitation method using ZnO (Zinc Oxide) as the starting material. The PXRD (Powder X-Ray Diffraction) results confirmed the intercalation process although the diffraction patterns of the resultant nanohybrid and the unbound pheromone were fairly similar but both have different basal spacings values. The FTIR (Fourier Transform Infrared) profiles and the chemical composition test supported the intercalation process with the percentage loading of LC into ZLH calculated to be 85%. The thermal stability of the free anion, LC was enhanced when it was transformed into LCN, increasing from 257 °C to 352 °C. The release of LC from the nanohybrid behaved in a sustained manner, governed by the pseudo-second order kinetic model with higher release of LC in sodium carbonate solution than the pH aqueous media. The synthesized nanohybrid was found to be safe for plant germination when the two seed types were successfully germinated in all the tested nanohybrid concentrations. However, the percentage seed germination and the radical seed length from the nanohybrid showed lower values compared to its counterpart anion, LC.展开更多
Post-synthetic modifications(PSM)have drawn great attention as a vigoroso tool to tune or enhance the performance of metal-organic frameworks(MOFs).However,the current PSM method usually have to sacrifice the porosity...Post-synthetic modifications(PSM)have drawn great attention as a vigoroso tool to tune or enhance the performance of metal-organic frameworks(MOFs).However,the current PSM method usually have to sacrifice the porosity of MOFs to enrich their functionality,such as pore space partition(PSP)and postsynthetic elimination and insertion(PSE&I),causing a trade-off in this aspect.To address this issue,we herein propose a new PSM strategy of using the size-matching ligands as the bolts to lock MOFs'pores,which could be anchored onto open metal sites(OMSs)after guest loading through a stepwise manipulation.As a result,the loaded cargoes undergo a controlled releasing process with respect to different bolt ligands.Our proposed strategy provides a promising way to balance the functionality and porosity of MOFs.展开更多
By using field trials, the migration and transformation of coated controlled release nitrogen (YZS80) in soil under the co-situs application mode were studied. The results indicated that YZS80 nitrogen dissolved out...By using field trials, the migration and transformation of coated controlled release nitrogen (YZS80) in soil under the co-situs application mode were studied. The results indicated that YZS80 nitrogen dissolved out in average speed of about 0.4%/d and 32% totally in 80 d compared with common compound fertUizer. For YZS80, in the vertical downward direction of application points, urea nitrogen content increased significantly (P 〈0.05) in the 45 -80 d and the 30 -60 cm soil layers; nitrate nitrogen content was little change range and in moderate (10 -100 mg/kg) in 0 -80 d and 10 -60 cm soil layers, but increased significantly ( P 〈0.05) 45 -80 d compared to 0 -45 d; ammonium nitrogen content was significant lower (P〈0.05) before 45 d in 10 -30 cm soil layers, but significant higher(P〈0.05) after 45 d in 10 -60 cm soil layers; NO3^- -N/NH4^+ -N meets gradually the needs of the crop with the extension of time. Under the co-situs application mode, the possibility of burning root and salt injury and loss dsk of nitrate leaching is a significant reduction.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
[Objective] The aim was to select the optimal amount of controlled-release fertilizer and provide theoretical references for controlled-release fertilizers use in summer maize. [Method] Long-term controlled-release fe...[Objective] The aim was to select the optimal amount of controlled-release fertilizer and provide theoretical references for controlled-release fertilizers use in summer maize. [Method] Long-term controlled-release fertilizers were applied once at sowing summer maize to explore effects on maize growth, yield, economic profits and environment. [Result] Maize yield reduced a little in the treatment group with 60% CRF, and increased in varying degrees in the rest groups in the range of 1.1%-7.4%, and some showed significant differences. [Conclusion] Controlled-release fertilizers can be applied once at the amount of 80% common fertilizer's, with con- sideration of maize yield, nitrogen use rate and economic profits, which is beneficial for summer maize application and promotion in North China.展开更多
Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRN...Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRNF) on reco very and nitrate leaching on paddy soils. During two early rice cropping seasons (2002 and 2003), a single basal application of CRNF at 90 kg N ha-1 increased grain yields by 7.7%to 11.6%compared with two applications of urea. Estimated by the difference method fertilizer N recovery of CRNF (mean 76.3%) was 38.9 pe rcentage point higher than that of urea (mean 37.4%); estimated by 15N isotope method (mean 49.6%) CRNF (mean 67.1%) was 35.9 percentage point higher than ur ea (mean 31.2%). NO3--N leaching losses were 9.19 and 6.70 kg ha-1 for urea and CRNF, respectively. NO3--N leaching during the early rice cropping season was 27.1 %lower from CRNF than from two applications of urea. These losses repr esent 10.2%and 7.4%of applied urea-N and CRNF-N. Results from this study ind icate that CRNF improves N recovery and reduces NO3--N leaching and increases rice yield.展开更多
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicat...The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.展开更多
Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus d...Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus determine the optimal nitrogen amount and suitable nitrogen content in substrate at seedling transplanting,, in com- parison with conventional fertilizer application. CRFN was applied at five levels, 0, 0.6, 1.2, 2.4 and 4.8 kg N/m3, and conventional fertilizer was applied at 0.6 kg N/m3 as control. Four replicates were included in each treatment. The results showed that 0.6-2.4 kg N/m3 CRFN provided sufficient N nutrient for bitter gourd, with higher shoot and root dry weights, root length and root surface area than control treat- ments. Correspondingly, the total inorganic nitrogen in substrate ranged from 99.3 to 162.5 mg/pot at seedling transplanting in these treatments. 1.2 kg N/m3 was proven to be the optimal CRFN rate. Compared with conventional nitrogen fertilizer applica- tion, 1.2 kg N/m3 CRFN in substrate increased the dry weight, nitrogen uptake and improved root morphology indices of seedlings, and more than 83.3 mg/pot inorgan- ic nitrogen could be carried with substrate at transplanting, revealing a potential to reduce N-deficient risk after rain and basal N input by continuous release of CRFN.展开更多
基金the financial support from the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021007)the National Nature Science Foundation of China(21903082 and 22273100)+2 种基金the Dalian Institute of Chemical Physics(DICP I202036,and I202218)the DNL Cooperation Fund,CAS(DNL202012)Liaoning Provincial Natural Science Foundation of China under grant 2022-MS-020。
文摘Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
基金supported by the National Natural Science Foundation of China(81771006)。
文摘The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere’s disease (MD) and sudden sensorineural hearing loss (SSHL).Gelation occurred shortly after mixing dexamethasone-containing fibrinogen with thrombin.Dexamethasone was constantly released for at least 16 d at a stable level after 7d in protocol 1 (low-dose),while it was robustly released within 4 d and slowed afterward until 10 d in protocol 2(high-dose).There were significant differences among the time points in Protocol 2 (p<0.01,ANOVA),and the exponential model with the formula y=15.299*e~(-0.483*t) fits the association.The estimated concentration of dexamethasone released on 7 d in protocol 2 was slightly lower than that observed in protocol 1.The fibrin sealant is capable of constantly releasing dexamethasone with adjustable dynamics.Targeted and minimally invasive administration of the material can be achieved in the clinic by sequential injections of the fluids using a soft-tipped catheter.
文摘A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.
基金Supported by the National Basic Research Program of China (2009CB623407), and the National Natural Science Foundation of China (20825622, 20806049, 20906064, 20990220, 21036002, 21076127, 21136006).
文摘As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties including hydraulic permeability and diffusional permeability can be dramatically controlled or adjusted self-regulatively in response to small chemical and/or physical stimuli in their environments. Such environmental stimuli-responsive smart membranes could find myriad applications in numerous fields ranging from controlled release to separations. Here the trans-membrane mass-transfer and membrane separation is introduced as the beginning to initiate the requirement of smart membranes, and then bio-inspired design of environmental stimuli-responsive smart membranes and four essential elements for smart membranes are introduced and discussed. Next, smart membrane types and their applications as smart tools for controllable mass-transfer in controlled release and separations are reviewed. The research tooics in the near future are also suggested.
基金This work was funded by the National Natural Science Foundation of China(31871573)the Key Research and Development Program of Jiangsu Province,China(BE2017369)the Jiangsu Agriculture Science and Technology Innovation Fund,China(JASTIF)(CX(18)1002).
文摘The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings.
基金Supported by National Modern Agricultural Industry Technology System,Youth Science and Technology Fund of Guizhou Academy of Agricultural Sciences No.[2020]02,Guiding Project of Guizhou Academy of Agricultural Sciences No.[2018]01.
文摘Citral(Eo)exhibits excellent fungicidal activities.However,it is difficult to maintain long-term fungicidal activity due to its strong volatility.Herein,a controlled-release strategy by using biomass-derived porous carbon(BC)was developed to overcome the drawback of Eo.New composite materials were prepared by loading Eo on tea stem porous carbon(BC@Eo),and their controlled-release fungicidal activity against Exobasidium vexans was assessed.BC with a large specific surface area of 1001.6 m2/g and mesoporous structure was fabricated through carbonization tempera-ture of 700℃.The BC@Eo materials were characterized using Fourier-transform infrared spectroscopy and X-ray powder diffraction.The results suggested that chemical and physical interactions occurred in BC@Eo.The Eo release profile suggested a biphasic pattern with an initial fast release on days 1–14 and a subsequent controlled phase on days 14–30.The in vitro cumulative release percentage of Eo from BC@Eo was 51%during one month,and this result was significantly lower than that from free Eo(cumulative release percentage of Eo of 82%in one week).The anti-fungal activities of Eo and BC@Eo against E.vexans were determined using the inhibition zone method.The results indicated that Eo and BC@Eo formed large inhibition zones of 19.66±0.79 and 21.92±0.77 mm,respectively.The influence on the hyphal structure of E.vexans was observed by scanning electron microscopy on day 30.The hyphal structure of E.vexans treated with BC@Eo was more shrunken than that treated with Eo at 30 days,suggesting that BC@Eo prolongs the fungicidal activity against E.vexans.This study demonstrated that the encapsulation of Eo in BC for developing the BC@Eo materials could be a promising strategy to inhibit volatility and maintain the fungicidal activity of Eo and provide a potential alternative for the reuse of abundant tea biomass waste resources.
基金financially supported by the Smart Fertilization Project (05)the National Key Research & Development Program of China (2022YFD1700605)。
文摘Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea(CU). However, the crucial factors influencing the responses of NH3and N2O emissions to CRU relative to CU are still unclear. In this study, we evaluated the responses of NH3and N2O emissions to CRU based on collected field data with a meta-analysis. CRU reduced the NH3and N2O emissions by 32.7 and 25.0% compared with CU, respectively. According to subgroup analysis, CRU presented better mitigation of NH3and N2O emissions in soils with pH 6.5–7.5(–47.9 and –23.7%) relative to either pH<6.5(–28.5and –21.4%) or pH>7.5(–29.3 and –17.3%), and in the rice season(–34.8 and –29.1%) relative to the wheat season(–19.8 and –22.8%). The responses of NH3and N2O emissions to CRU increased from rainfed(–30.5 and –17.0%) to irrigated(–32.5 and –22.9%), and then to paddy(–34.8 and –29.1%) systems. In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen(TN);however, soil TN did not significantly affect the response of NH3volatilization. The reduction in NH3emission was greater in sandy-textured soil(–57.7%) relative to loam-textured(–32.9%) and clay-textured(–32.3%) soils, whereas soil texture did not affect N2O emission. Overall, CRU was a good option for reducing the NH3and N2O emissions relative to CU in agricultural production. This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE.
基金Peanut Innovation Team Project of Shandong Province Modern Agricultural Industry Technology System(SDAIT-05-022)Special Fund Project of Shandong Province Agricultural Technology Promotion(SDTG-2016-08).
文摘[Objectives]To study the effects of different proportions of controlled release urea and ordinary urea on peanut yield.[Methods]A total of 5 treatments were set up according to different proportions of controlled release urea and ordinary urea,randomly arranged in blocks and repeated 3 times.[Results]The test results of field districts showed that different proportions of controlled release urea and conventional urea had different effects on peanut yield.On the basis of applying 50 kg/666.7 m^(2)of calcium superphosphate and 17 kg/666.7 m^(2)of potassium sulfate,13.34 kg/666.7 m^(2)of pure nitrogen was applied.The optimal ratio of controlled release urea to ordinary urea was 75:25,followed by 50:50.The output was 379.83 and 371.83 kg/666.7 m^(2),separately increased by 6.74%and 4.50%compared to the application of ordinary urea.[Conclusions]The combined application of controlled release urea and ordinary urea in peanuts can significantly increase peanut yield compared to just applying ordinary urea.
文摘A long chain insect pheromone for subterranean termites, LC (Lignoceric Acid), was intercalated into the inorganic interlayer, ZLH (Zinc Layered Hydroxide), resulting in the formation of a new nanohybrid, labelled as LCN (Lignocerate Nanohybrid). The formation of this inorganic-organic structure nanohybrid was synthesized by the co-precipitation method using ZnO (Zinc Oxide) as the starting material. The PXRD (Powder X-Ray Diffraction) results confirmed the intercalation process although the diffraction patterns of the resultant nanohybrid and the unbound pheromone were fairly similar but both have different basal spacings values. The FTIR (Fourier Transform Infrared) profiles and the chemical composition test supported the intercalation process with the percentage loading of LC into ZLH calculated to be 85%. The thermal stability of the free anion, LC was enhanced when it was transformed into LCN, increasing from 257 °C to 352 °C. The release of LC from the nanohybrid behaved in a sustained manner, governed by the pseudo-second order kinetic model with higher release of LC in sodium carbonate solution than the pH aqueous media. The synthesized nanohybrid was found to be safe for plant germination when the two seed types were successfully germinated in all the tested nanohybrid concentrations. However, the percentage seed germination and the radical seed length from the nanohybrid showed lower values compared to its counterpart anion, LC.
基金financially supported by Natural Science Foundation of Beijing,China(No.2212006)National Natural Science Foundation of China(Nos.22171144,21501012,21806011 and 21761026)+1 种基金the Fundamental Research Funds for the Central Universities(Nankai University)High-level Teachers in Beijing Municipal Universities in the Period of 13th Five–year Plan(No.CIT&TCD201904044)。
文摘Post-synthetic modifications(PSM)have drawn great attention as a vigoroso tool to tune or enhance the performance of metal-organic frameworks(MOFs).However,the current PSM method usually have to sacrifice the porosity of MOFs to enrich their functionality,such as pore space partition(PSP)and postsynthetic elimination and insertion(PSE&I),causing a trade-off in this aspect.To address this issue,we herein propose a new PSM strategy of using the size-matching ligands as the bolts to lock MOFs'pores,which could be anchored onto open metal sites(OMSs)after guest loading through a stepwise manipulation.As a result,the loaded cargoes undergo a controlled releasing process with respect to different bolt ligands.Our proposed strategy provides a promising way to balance the functionality and porosity of MOFs.
基金Supported by Beijing Science Committee Project"Science & TechnologyNew Star"(2008B38)"The Research and Establishmentof Agrochemical Service System for New Type of Fertilizer"(d0706004040431)The Foundation for Youth Scholars of BeijingAcademy of Agriculture and Forestry Sciences"The Developmentand Evaluation of Micro Water-soluble Cementation Coated Slow-releaseFertilizers Suitable for Semiand Areas"~~
文摘By using field trials, the migration and transformation of coated controlled release nitrogen (YZS80) in soil under the co-situs application mode were studied. The results indicated that YZS80 nitrogen dissolved out in average speed of about 0.4%/d and 32% totally in 80 d compared with common compound fertUizer. For YZS80, in the vertical downward direction of application points, urea nitrogen content increased significantly (P 〈0.05) in the 45 -80 d and the 30 -60 cm soil layers; nitrate nitrogen content was little change range and in moderate (10 -100 mg/kg) in 0 -80 d and 10 -60 cm soil layers, but increased significantly ( P 〈0.05) 45 -80 d compared to 0 -45 d; ammonium nitrogen content was significant lower (P〈0.05) before 45 d in 10 -30 cm soil layers, but significant higher(P〈0.05) after 45 d in 10 -60 cm soil layers; NO3^- -N/NH4^+ -N meets gradually the needs of the crop with the extension of time. Under the co-situs application mode, the possibility of burning root and salt injury and loss dsk of nitrate leaching is a significant reduction.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金Supported by S&T Development Plan Program of Shandong Province(2014GNC113001)State Key Laboratory for Biology of Crops(2014KF11)S&T Development Plan Program of Tai'an City~~
文摘[Objective] The aim was to select the optimal amount of controlled-release fertilizer and provide theoretical references for controlled-release fertilizers use in summer maize. [Method] Long-term controlled-release fertilizers were applied once at sowing summer maize to explore effects on maize growth, yield, economic profits and environment. [Result] Maize yield reduced a little in the treatment group with 60% CRF, and increased in varying degrees in the rest groups in the range of 1.1%-7.4%, and some showed significant differences. [Conclusion] Controlled-release fertilizers can be applied once at the amount of 80% common fertilizer's, with con- sideration of maize yield, nitrogen use rate and economic profits, which is beneficial for summer maize application and promotion in North China.
文摘Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRNF) on reco very and nitrate leaching on paddy soils. During two early rice cropping seasons (2002 and 2003), a single basal application of CRNF at 90 kg N ha-1 increased grain yields by 7.7%to 11.6%compared with two applications of urea. Estimated by the difference method fertilizer N recovery of CRNF (mean 76.3%) was 38.9 pe rcentage point higher than that of urea (mean 37.4%); estimated by 15N isotope method (mean 49.6%) CRNF (mean 67.1%) was 35.9 percentage point higher than ur ea (mean 31.2%). NO3--N leaching losses were 9.19 and 6.70 kg ha-1 for urea and CRNF, respectively. NO3--N leaching during the early rice cropping season was 27.1 %lower from CRNF than from two applications of urea. These losses repr esent 10.2%and 7.4%of applied urea-N and CRNF-N. Results from this study ind icate that CRNF improves N recovery and reduces NO3--N leaching and increases rice yield.
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
文摘The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201503106,201103003)Earmarked Fund for China Agriculture Research System(CARS-25-G-36)~~
文摘Different application rates of controlled release nitrogen fertilizer (CRFN) were designed to evaluate their effects on the growth and root morphology of bitter gourd (Momordica charantia L.) seedlings, and thus determine the optimal nitrogen amount and suitable nitrogen content in substrate at seedling transplanting,, in com- parison with conventional fertilizer application. CRFN was applied at five levels, 0, 0.6, 1.2, 2.4 and 4.8 kg N/m3, and conventional fertilizer was applied at 0.6 kg N/m3 as control. Four replicates were included in each treatment. The results showed that 0.6-2.4 kg N/m3 CRFN provided sufficient N nutrient for bitter gourd, with higher shoot and root dry weights, root length and root surface area than control treat- ments. Correspondingly, the total inorganic nitrogen in substrate ranged from 99.3 to 162.5 mg/pot at seedling transplanting in these treatments. 1.2 kg N/m3 was proven to be the optimal CRFN rate. Compared with conventional nitrogen fertilizer applica- tion, 1.2 kg N/m3 CRFN in substrate increased the dry weight, nitrogen uptake and improved root morphology indices of seedlings, and more than 83.3 mg/pot inorgan- ic nitrogen could be carried with substrate at transplanting, revealing a potential to reduce N-deficient risk after rain and basal N input by continuous release of CRFN.