期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink 被引量:3
1
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances 被引量:1
2
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
下载PDF
A Review on Vibration Control of Multiple Cylinders Subjected to FlowInduced Vibrations 被引量:1
3
作者 XU Wan-hai MA Ye-xuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期183-197,共15页
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ... The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods. 展开更多
关键词 flow-induced vibration vibration control multiple cylinders TANDEM side-by-side staggered
下载PDF
Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features 被引量:1
4
作者 Xiaoning Zhao Chaoyan Wang +2 位作者 Hongli Ji Jinhao Qiu Li Cheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期120-134,共15页
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa... Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering. 展开更多
关键词 Acoustic black hole Vibration control Dynamic vibration absorber Coupling analysis
下载PDF
Review of the Tuned Mass Damper Inerter(TMDI)in Energy Harvesting and Vibration Control:Designs,Analysis and Applications
5
作者 Xiaofang Kang Qiwen Huang +3 位作者 Zongqin Wu Jianjun Tang Xueqin Jiang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2361-2398,共38页
Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends thro... Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends through its“inertial”constant.Due to its unique mechanical properties,TMDI has received widespread attention and application in the past twenty years.As different configurations are required in different practical situations,TMDI is still active in the research on vibration control and energy harvesting in structures.This paper provides a comprehensive review of the research status of TMDI.This work first examines the generation and important vibration control characteristics of TMDI.Then,the energy harvesting performance of electromagnetic tuned mass damper inerter(EM-TMDI)is discussed.This work emphasizes the formation of a passive dynamic vibration absorber by coupling traditional TMD with inertial devices.This paper also summarizes the design and implementation of optimal vibration control and energy harvesting for TMDI.Furthermore,this paper details the applications of TMDI in the fields of bridges and building engineering.Finally,this paper summarizes the necessity of research on tuned mass-damper-inertia,the challenges faced currently,and future research directions,such as control of parameters in electromagnetic energy harvesting TMDI systems and low-cost TMDI. 展开更多
关键词 TMDI EM-TMDI energy harvesting vibration control inertial device
下载PDF
Study on vibration reduction of two-scale system coupled with dynamic vibration absorber
6
作者 Honglin WAN Xianghong LI Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1335-1352,共18页
The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of th... The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect. 展开更多
关键词 two-scale system dynamic vibration absorber vibration control inerter
下载PDF
Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation
7
作者 Jiawei MAO Hao GAO +2 位作者 Junzhe ZHU Penglin GAO Yegao QU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1665-1684,共20页
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr... Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance. 展开更多
关键词 broadband vibration attenuation efficient closed-form analytical solution electromechanical coupling piezoelectric material vibration control
下载PDF
Vibration Control of the Rail Grinding Vehicle with Abrasive Belt Based on Structural Optimization and Lightweight Design
8
作者 Wengang Fan Shuai Zhang +2 位作者 Zhiwei Wu Yi Liu Jiangnan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期311-337,共27页
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan... As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment. 展开更多
关键词 Vibration control Dynamic characteristics Structural optimization Lightweight design Modal analysis
下载PDF
Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures
9
作者 Xiaofang Kang Jian Wu +1 位作者 Xinqi Wang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期551-593,共43页
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ... In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes. 展开更多
关键词 Adjacent buildings tuned inerter damper(TID) H2 norm optimization vibration control energy harvesting
下载PDF
Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method
10
作者 Jianing LIU Jinqiang LI Ying WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1807-1820,共14页
Several types of acoustic metamaterials composed of resonant units have been developed to achieve low-frequency bandgaps.In most of these structures,bandgaps are determined by their geometric configurations and materi... Several types of acoustic metamaterials composed of resonant units have been developed to achieve low-frequency bandgaps.In most of these structures,bandgaps are determined by their geometric configurations and material properties.This paper presents a frequency-displacement feedback control method for vibration suppression in a sandwich-like acoustic metamaterial plate.The band structure is theoretically derived using the Hamilton principle and validated by comparing the theoretical calculation results with the finite element simulation results.In this method,the feedback voltage is related to the displacement of a resonator and the excitation frequency.By applying a feedback voltage on the piezoelectric fiber-reinforced composite(PFRC)layers attached to a cantilever-mass resonator,the natural frequency of the resonator can be adjusted.It ensures that the bandgap moves in a frequency-dependent manner to keep the excitation frequency within the bandgap.Based on this frequency-displacement feedback control strategy,the bandgap of the metamaterial plate can be effectively adjusted,and the vibration of the metamaterial plate can be significantly suppressed. 展开更多
关键词 acoustic metamaterial Hamilton principle electromechanical coupling vibration control local resonance
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
11
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
12
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Control and vibration analyses of a sandwich doubly curved micro-composite shell with honeycomb,truss,and corrugated cores based on the fourth-order shear deformation theory
13
作者 F.SHIRDELAN M.MOHAMMADIMEHR F.BARGOZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1773-1790,共18页
Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulati... Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT. 展开更多
关键词 vibration and control doubly curved shell micro-composite HONEYCOMB TRUSS corrugate core
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
14
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
A vertical track nonlinear energy sink
15
作者 Meng LI Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期931-946,共16页
Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design ... Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity. 展开更多
关键词 track nonlinear energy sink(TNES) vertical direction GRAVITY nonlinear stiffness harmonic balance method(HBM) vibration control
下载PDF
Data Driven Vibration Control:A Review
16
作者 Weiyi Yang Shuai Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1898-1917,共20页
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests... With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue. 展开更多
关键词 Data driven vibration control(DDVC) data science designing method feedforward control industrial robot input shaping optimizing method residual vibration
下载PDF
MULTI-LAYER PIEZOELECTRIC ACTUATOR AND ITS APPLICATION IN CONTROLLABLE CONSTRAINED DAMPING TREATMENT
17
作者 ZHANG Xinong XIE Shilin ZHANG Yahong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期94-100,共7页
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based ... A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure. 展开更多
关键词 Vibration control Multi-layer piezoelectric actuator controllable constrained damping treatment Hybrid damping
下载PDF
Design and analysis of a two-dimensional vibration control mechanism based on vibro-impact damping
18
作者 张来喜 QIAN Feng WU Mingliang 《High Technology Letters》 EI CAS 2023年第1期105-112,共8页
The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed bet... The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed between the end-effector and the robot is proposed,which can suppress the axial and torsional vibrations based on the principle of vibro-impact(VI)damping.The energy dissipation of the system by vibro-impact damping is analyzed.Then,the influence of the structure parameters on the vibration attenuation effect is studied,and a semi-active vibration control method of variable collision clearance is presented.The simulation results show that the control method has effective vibration control performance. 展开更多
关键词 robotic drilling two-dimensional vibration control impact damping variable clearance semi-active vibration control
下载PDF
Evaluating effectiveness of multiple tuned mass dampers for vibration control of jacket offshore wind turbines under onshore and seafloor earthquakes
19
作者 Pan Zuxing Liu Yingzhou +4 位作者 Wang Wenhua Li Xin Zhao Shengxiao Jiang Zhenqiang Shang Jin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1045-1063,共19页
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I... The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes. 展开更多
关键词 offshore wind turbine EARTHQUAKE vibration control coupled analysis MTMD
下载PDF
Variable stiffness tuned particle dampers for vibration control of cantilever boring bars
20
作者 Xiangying GUO Yunan ZHU +2 位作者 Zhong LUO Dongxing CAO Jihou YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2163-2186,共24页
This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose... This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system. 展开更多
关键词 PARTICLE tuned particle damper(TPD) variable stiffness vibration control
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部