The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the si...The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the simple circuitry makes currently project a low cost product, which can be bought even by a poor farmer. This research work is best suited for places where water is scares and has to be used in limited quantity and this proposal is a model to modernize the agriculture industries at a mass scale with optimum expenditure. In the field of agricultural engineering, use of sensor method of irrigation operation is important and it is well known that closed circuits of Mini-sprinkler irrigation system are very economical and efficient. Closed circuits are considered one of the modifications of Mini-sprinkler irrigation system, and added advantages to Mini-sprinkler irrigation system because it can relieve low operating pressures problem at the end of the lateral lines. In the conventional closed circuits of Mini-sprinkler irrigation system, the farmer has to keep watch on irrigation timetable, which is different for different crops. Using this system, one can save manpower, water to improve production and ultimately profit. The data could be summarized in following: Irrigation methods under study when using lateral length 60 mcould be ranked in the following ascending order according the values of the predicted and measured head losses CM1M-SIS CM2M-SIS.The correlation (Corr.) coefficients were used to compare the predicted and measured head losses along the lateral lines of all the closed circuits designs. Generally, the values of correlation analysis were (>0.90) were obtained with 0% field slope60 mlength (experimental conditions) for all closed circuits.The interaction between irrigation methods: at the start there are significant differences between CM2M-SIS and CM1M-SIS.展开更多
Water conservation starts from rationalizing irrigation,as it is the largest consumer of this vital source.Following the critical and urgent nature of this issue,several works have been proposed.The idea of most resea...Water conservation starts from rationalizing irrigation,as it is the largest consumer of this vital source.Following the critical and urgent nature of this issue,several works have been proposed.The idea of most researchers is to develop irrigation management systems tomeet the water needs of plants with optimal use of this resource.In fact,irrigation water requirement is only the amount of water that must be applied to compensate the evapotranspiration loss.Penman-Monteith equation is the most common formula to evaluate reference evapotranspiration,but it requiresmany factors that cannot be available in many cases.This leads to a trend towards behavior model estimation.System identification with control is one of the most promising applications in this axis.The idea behind this proposal depends on three stages:First,the estimation of reference evapotranspiration(ET0)by a linear ARX model,where temperature,relative humidity,insolation duration and wind speed are used as inputs,and ET0 estimated by Penman-Monteith equation as output.The results show that the values estimated by thismethodwere in good agreement with the measured data.The second part of this paper is tomanage the quantity of water.For this purpose,two controllers are used for testing,lead-lag and PID.To adjust the first controller and optimize the choice of its parameters,Nelder-Mead algorithm is used.In the last part,a comparative study is done between the two used controllers.展开更多
Macadamia has the highest economic value and has always enjoyed the reputation of"king of dried fruits".In the process of digital management,irrigation is the most widely used.This paper designs the automati...Macadamia has the highest economic value and has always enjoyed the reputation of"king of dried fruits".In the process of digital management,irrigation is the most widely used.This paper designs the automatic control drip irrigation device in the digital management of macadamia nuts,including drip irrigation pipe,soil moisture sensor,motor,water storage chamber,water pump and central controller,and then gives an implementation scheme.The device is not only convenient for laying and positioning,but also convenient for controlling the overall irrigation water consumption during each drip irrigation and accurate use and improving the level of digital management.展开更多
This study was conducted to solve the problem of green weed control in wheat fields in Hetao irrigation area among the Yellow River.Based on the observation of the competition between wheat and weeds in areas where we...This study was conducted to solve the problem of green weed control in wheat fields in Hetao irrigation area among the Yellow River.Based on the observation of the competition between wheat and weeds in areas where weeds occurred seriously in wheat fields in Hetao irrigation area among the Yellow River,we measured the effects of green weed control measures and wheat yield using different wheat varieties,planting densities,different organic fertilizers,different ploughing times,and different mulching methods.The results showed that the emergence of weeds in wheat fields dominated by Chenopodiaceae weeds,grain amaranth and barnyard grass was more than 10 d later than wheat.Weeds were mainly distributed between rows(holes),and the number of plants accounted for 66.6%(drill seeding)and 97.6%(hole seeding),respectively.And the growth of weeds in rows(holes)was weaker,and the fresh weight of individual plants was 39.3%-41.9%lower than that between rows(holes).The ecological weed inhibitory effect was significant in the early stage of wheat growth;and among the green weed control measures,except that different varieties and planting densities caused no significant difference in weed control effect,other measures had obvious weed control effects.Comprehensive comparison showed that the control effects of plant number in black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 82.3%,71.7%,22.0%,and 8.6%,respectively;the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 98.0%,97.1%,23.9%,and 9.6%,respectively;and the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding and increasing ploughing times increased wheat yield by 69.4%,56.4%and 21.1%,respectively.The technologies in this study can realize the purposes of mechanized green weed control in organic wheat production and low-cost,high-yield,large-scale production.展开更多
In Rwanda, agricultural industry depends on seasonal rain, and this has been a great challenge to agriculture in Rwanda. The designed sample of Photovoltaic pumping system is for irrigation on a piece of land, with 10...In Rwanda, agricultural industry depends on seasonal rain, and this has been a great challenge to agriculture in Rwanda. The designed sample of Photovoltaic pumping system is for irrigation on a piece of land, with 100 m2 field fed by underground water tank of 8 meters of elevation collected during rainy seasons. The adapted 100 m2 field is based on the fact that Rwanda is a densely populated country, also is adapted to be used especially in horticulture to increase exportation. In this system, a photovoltaic system is used as a power source;a pump is coupled with electric motor to drive it and hosepipe to convey water to the storage tank. A sensor is used to send a signal to the driver section at the same time sending a signal to the microcontroller that controls the driver unit and the corresponding relay, which switches off the motor when the water level reaches the lowest level.展开更多
Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents fo...Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents for controlling cotton Verticillium wilt, field split plot experiment was designed to research the control effects of Bacillus subtilis WP (15, 30 and 45 kg/hm^2), Shibeijian Trichoderma harzianum (15, 18 and 24 kg/hm^2), Yufeng“99”(15, 22.5 and 30 kg/hm^2), Zhongnonglukang (30, 45 and 60 kg/hm^2) and Athomin (45, 60 and 75 kg/hm^2) on cotton Vertillium wilt in 2016 and 2017. The disease control effect against cotton Verticillium wilt, cotton growth, cotton yield and fiber quality were compared and analyzed by biometrical method. The results showed that five biological agents significantly reduced the incidence rate and disease index of cotton Verticillium wilt, and the average control effect reached 33.50%-74.94%. The control effect of Shibeijian T. harzianum dripped at the dosage of 18 kg/hm^2 was significantly higher than that dripped at 15 and 24 kg/hm^2. There was no significant difference between different application dosages in Athomin treatment. The control effect of the remaining three agents had significantly positive correlation with application dosage. Five biological agents had obvious promotion effects on cotton growth, and the cotton height, width of the top fourth leaf, fruit branch number and boll number per plant were increased in different levels. The cotton height and width of the top fourth leaf had no obvious changes with the increase of dosage, while the fruit branch number and boll number increased with the increasing dosage. Meanwhile, these biological agents significantly advanced the maturity of cotton. Except for Athomin treatment, the cotton seed yield in other treatments showed an increasing trend and increased significantly with the increasing dosage. The cotton fiber length and fiber breaking tenacity were improved slightly, but cotton quality had not been improved conspicuously. Therefore, according to disease control effect, cotton growth and yield performance, the suitable drip dosage of biological agents were as follows: Yufeng "99" 30 kg/hm^2, Zhongnonglukang 60 kg/hm^2, B. subtilis WP 45.0 kg/hm^2, and Shibejian T. harzianum 18.0 kg/hm^2. The drip dosage of Athomin still needs to be further studied.展开更多
Center pivot irrigation systems usually apply a relatively uniform amount of water to fields that are often inherently variable, which could lead to significant waste of water and energy. To address this issue, our te...Center pivot irrigation systems usually apply a relatively uniform amount of water to fields that are often inherently variable, which could lead to significant waste of water and energy. To address this issue, our team is now developing an Intelligent Center Pivot (ICP) by integrating sensor-based irrigation scheduling with variable rate irrigation technology. However, before this technology can be applied in commercial production, it is necessary to educate growers about its practicality and potential benefits. The objective of this study was to develop a portable tabletop intelligent center pivot model (ICPDemo) to demonstrate and promote adoption of the ICP technology. This paper describes an ICPDemo constructed in 2014, including the design specifications, electro-mechanical design, control strategy, and performance. The ICPDemo has performed according to design specifications and is successfully being used to demonstrate the benefits and effectiveness of ICP technology for irrigation scheduling.展开更多
Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s pri...Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s primary treated water R1 and secondary treated water R2,and river water R3)meeting the requirements of water quality for farmland irrigation were selected,and three types of irrigation water levels(low water levelW1 of 0–80 mm,medium water level W2 of 0–100 mm,and high water level W3 of 0–150 mm)were adopted to carry out research on the influence mechanismS of different irrigation water sources and water levels on water and nitrogen use and crop growth in paddy field.The water quantity indicators(irrigation times and irrigation volume),soil ammonium nitrogen(NH4+-N)and nitrate nitrogen(NO3−-N),rice yield indicators(thousand-grain weight,the number of grains per spike,and the number of effective spikes),and quality indicators(the amount of protein,amylose,vitamin C,nitrate and nitrite content)of rice were measured.The results showed that,the average irrigation volume under W3 was 2.4 and 1.9 times of that under W1 and W2,respectively.Compared with R3,the peak consumption of rice was lagged behind under R1 and R2,and the nitrogen form in 0–40 cm soil layers under rural sewage irrigation was mainly NH4+-N.The changes of NO3−-N and NH4+-N in the 0–40 cm soil layer showed the trend of declining and then increasing.The water level control only had a significant effect on the change of NO3−-N in the 60–80 cm soil layer.Both irrigation water use efficiency and crop water use efficiency were gradually reduced with the increase of field water level control.The nitrogen utilization efficiency under rural sewage irrigation was significantly higher than that under R3.Compared with the R3,rural sewage irrigation could significantly increase the yield of rice,and as the field water level rose,the effect of yield promotion was more obvious.It was noteworthy that the grain of rice under R1 monitored the low nitrate and nitrite content,but no nitrate and nitrite was discovered under R2 and R3.Therefore,reasonable rural sewage irrigation(R2)and medium water level(W2)were beneficial to improve nitrogen utilization efficiency,crop yield and crop quality promotion.展开更多
In order to help the small-scale farmer, an automatic irrigation control system was proposed. This system will provide an irrigation system that will ease the burden of the citizen to take care of the plant. This syst...In order to help the small-scale farmer, an automatic irrigation control system was proposed. This system will provide an irrigation system that will ease the burden of the citizen to take care of the plant. This system will run automatically by referring to the time set by the user. As the name itself is a water control system, this system will only start irrigating when the time set triggered the water control level for the plant to grow healthily. It will automatically stop when the timer is off (1 hour). The brain of the system is the PLC (Programmable Logic Controller). This is the place where all the activities are done. The irrigation will be provided by a pump that is also connected to the microcontroller. The pump will be activated until the timer has reached its time set. This system will continue running until the user presses the OFF button.展开更多
文摘The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the simple circuitry makes currently project a low cost product, which can be bought even by a poor farmer. This research work is best suited for places where water is scares and has to be used in limited quantity and this proposal is a model to modernize the agriculture industries at a mass scale with optimum expenditure. In the field of agricultural engineering, use of sensor method of irrigation operation is important and it is well known that closed circuits of Mini-sprinkler irrigation system are very economical and efficient. Closed circuits are considered one of the modifications of Mini-sprinkler irrigation system, and added advantages to Mini-sprinkler irrigation system because it can relieve low operating pressures problem at the end of the lateral lines. In the conventional closed circuits of Mini-sprinkler irrigation system, the farmer has to keep watch on irrigation timetable, which is different for different crops. Using this system, one can save manpower, water to improve production and ultimately profit. The data could be summarized in following: Irrigation methods under study when using lateral length 60 mcould be ranked in the following ascending order according the values of the predicted and measured head losses CM1M-SIS CM2M-SIS.The correlation (Corr.) coefficients were used to compare the predicted and measured head losses along the lateral lines of all the closed circuits designs. Generally, the values of correlation analysis were (>0.90) were obtained with 0% field slope60 mlength (experimental conditions) for all closed circuits.The interaction between irrigation methods: at the start there are significant differences between CM2M-SIS and CM1M-SIS.
文摘Water conservation starts from rationalizing irrigation,as it is the largest consumer of this vital source.Following the critical and urgent nature of this issue,several works have been proposed.The idea of most researchers is to develop irrigation management systems tomeet the water needs of plants with optimal use of this resource.In fact,irrigation water requirement is only the amount of water that must be applied to compensate the evapotranspiration loss.Penman-Monteith equation is the most common formula to evaluate reference evapotranspiration,but it requiresmany factors that cannot be available in many cases.This leads to a trend towards behavior model estimation.System identification with control is one of the most promising applications in this axis.The idea behind this proposal depends on three stages:First,the estimation of reference evapotranspiration(ET0)by a linear ARX model,where temperature,relative humidity,insolation duration and wind speed are used as inputs,and ET0 estimated by Penman-Monteith equation as output.The results show that the values estimated by thismethodwere in good agreement with the measured data.The second part of this paper is tomanage the quantity of water.For this purpose,two controllers are used for testing,lead-lag and PID.To adjust the first controller and optimize the choice of its parameters,Nelder-Mead algorithm is used.In the last part,a comparative study is done between the two used controllers.
基金Supported by Guangxi Science and Technology Program Project of China(Guike AD19245169)Yulin City Scientific Research and Technology Development Plan Project(Yushike 20202001,2019Cxpt00A4,Yushike 20204038).
文摘Macadamia has the highest economic value and has always enjoyed the reputation of"king of dried fruits".In the process of digital management,irrigation is the most widely used.This paper designs the automatic control drip irrigation device in the digital management of macadamia nuts,including drip irrigation pipe,soil moisture sensor,motor,water storage chamber,water pump and central controller,and then gives an implementation scheme.The device is not only convenient for laying and positioning,but also convenient for controlling the overall irrigation water consumption during each drip irrigation and accurate use and improving the level of digital management.
基金Supported by Science and Technology Cooperation Project between Bayannaoer Academy of Agricultural and Animal Sciences and Bayannaoer Municipal Government(2020BCN886)2020 Science and Technology Major Special Project of Inner Mongolia Autonomous Region(NMKJXM202013)Inner Mongolia"Grassland Talents"Engineering Team(CYYC2019-2-50).
文摘This study was conducted to solve the problem of green weed control in wheat fields in Hetao irrigation area among the Yellow River.Based on the observation of the competition between wheat and weeds in areas where weeds occurred seriously in wheat fields in Hetao irrigation area among the Yellow River,we measured the effects of green weed control measures and wheat yield using different wheat varieties,planting densities,different organic fertilizers,different ploughing times,and different mulching methods.The results showed that the emergence of weeds in wheat fields dominated by Chenopodiaceae weeds,grain amaranth and barnyard grass was more than 10 d later than wheat.Weeds were mainly distributed between rows(holes),and the number of plants accounted for 66.6%(drill seeding)and 97.6%(hole seeding),respectively.And the growth of weeds in rows(holes)was weaker,and the fresh weight of individual plants was 39.3%-41.9%lower than that between rows(holes).The ecological weed inhibitory effect was significant in the early stage of wheat growth;and among the green weed control measures,except that different varieties and planting densities caused no significant difference in weed control effect,other measures had obvious weed control effects.Comprehensive comparison showed that the control effects of plant number in black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 82.3%,71.7%,22.0%,and 8.6%,respectively;the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 98.0%,97.1%,23.9%,and 9.6%,respectively;and the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding and increasing ploughing times increased wheat yield by 69.4%,56.4%and 21.1%,respectively.The technologies in this study can realize the purposes of mechanized green weed control in organic wheat production and low-cost,high-yield,large-scale production.
文摘In Rwanda, agricultural industry depends on seasonal rain, and this has been a great challenge to agriculture in Rwanda. The designed sample of Photovoltaic pumping system is for irrigation on a piece of land, with 100 m2 field fed by underground water tank of 8 meters of elevation collected during rainy seasons. The adapted 100 m2 field is based on the fact that Rwanda is a densely populated country, also is adapted to be used especially in horticulture to increase exportation. In this system, a photovoltaic system is used as a power source;a pump is coupled with electric motor to drive it and hosepipe to convey water to the storage tank. A sensor is used to send a signal to the driver section at the same time sending a signal to the microcontroller that controls the driver unit and the corresponding relay, which switches off the motor when the water level reaches the lowest level.
基金Supported by National Key Research and Development Program(2016yfd02004005-4)Modern Agricultural Science and Technology Development Plan of Corps(2015AC008)
文摘Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents for controlling cotton Verticillium wilt, field split plot experiment was designed to research the control effects of Bacillus subtilis WP (15, 30 and 45 kg/hm^2), Shibeijian Trichoderma harzianum (15, 18 and 24 kg/hm^2), Yufeng“99”(15, 22.5 and 30 kg/hm^2), Zhongnonglukang (30, 45 and 60 kg/hm^2) and Athomin (45, 60 and 75 kg/hm^2) on cotton Vertillium wilt in 2016 and 2017. The disease control effect against cotton Verticillium wilt, cotton growth, cotton yield and fiber quality were compared and analyzed by biometrical method. The results showed that five biological agents significantly reduced the incidence rate and disease index of cotton Verticillium wilt, and the average control effect reached 33.50%-74.94%. The control effect of Shibeijian T. harzianum dripped at the dosage of 18 kg/hm^2 was significantly higher than that dripped at 15 and 24 kg/hm^2. There was no significant difference between different application dosages in Athomin treatment. The control effect of the remaining three agents had significantly positive correlation with application dosage. Five biological agents had obvious promotion effects on cotton growth, and the cotton height, width of the top fourth leaf, fruit branch number and boll number per plant were increased in different levels. The cotton height and width of the top fourth leaf had no obvious changes with the increase of dosage, while the fruit branch number and boll number increased with the increasing dosage. Meanwhile, these biological agents significantly advanced the maturity of cotton. Except for Athomin treatment, the cotton seed yield in other treatments showed an increasing trend and increased significantly with the increasing dosage. The cotton fiber length and fiber breaking tenacity were improved slightly, but cotton quality had not been improved conspicuously. Therefore, according to disease control effect, cotton growth and yield performance, the suitable drip dosage of biological agents were as follows: Yufeng "99" 30 kg/hm^2, Zhongnonglukang 60 kg/hm^2, B. subtilis WP 45.0 kg/hm^2, and Shibejian T. harzianum 18.0 kg/hm^2. The drip dosage of Athomin still needs to be further studied.
文摘Center pivot irrigation systems usually apply a relatively uniform amount of water to fields that are often inherently variable, which could lead to significant waste of water and energy. To address this issue, our team is now developing an Intelligent Center Pivot (ICP) by integrating sensor-based irrigation scheduling with variable rate irrigation technology. However, before this technology can be applied in commercial production, it is necessary to educate growers about its practicality and potential benefits. The objective of this study was to develop a portable tabletop intelligent center pivot model (ICPDemo) to demonstrate and promote adoption of the ICP technology. This paper describes an ICPDemo constructed in 2014, including the design specifications, electro-mechanical design, control strategy, and performance. The ICPDemo has performed according to design specifications and is successfully being used to demonstrate the benefits and effectiveness of ICP technology for irrigation scheduling.
基金financially supported by National Key Research and Development Program(2019YFC0408803)Basic Public Welfare Research Project of Zhejiang Province(LGN20E090001)+2 种基金Major Scientific and Technological Projects of Zhejiang Provincial Department of Water Resources(RA1913)Water Conservancy Science and Technology in Zhejiang Province(RC1918,RC2029)National Natural Science Foundation of China(52009044).
文摘Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s primary treated water R1 and secondary treated water R2,and river water R3)meeting the requirements of water quality for farmland irrigation were selected,and three types of irrigation water levels(low water levelW1 of 0–80 mm,medium water level W2 of 0–100 mm,and high water level W3 of 0–150 mm)were adopted to carry out research on the influence mechanismS of different irrigation water sources and water levels on water and nitrogen use and crop growth in paddy field.The water quantity indicators(irrigation times and irrigation volume),soil ammonium nitrogen(NH4+-N)and nitrate nitrogen(NO3−-N),rice yield indicators(thousand-grain weight,the number of grains per spike,and the number of effective spikes),and quality indicators(the amount of protein,amylose,vitamin C,nitrate and nitrite content)of rice were measured.The results showed that,the average irrigation volume under W3 was 2.4 and 1.9 times of that under W1 and W2,respectively.Compared with R3,the peak consumption of rice was lagged behind under R1 and R2,and the nitrogen form in 0–40 cm soil layers under rural sewage irrigation was mainly NH4+-N.The changes of NO3−-N and NH4+-N in the 0–40 cm soil layer showed the trend of declining and then increasing.The water level control only had a significant effect on the change of NO3−-N in the 60–80 cm soil layer.Both irrigation water use efficiency and crop water use efficiency were gradually reduced with the increase of field water level control.The nitrogen utilization efficiency under rural sewage irrigation was significantly higher than that under R3.Compared with the R3,rural sewage irrigation could significantly increase the yield of rice,and as the field water level rose,the effect of yield promotion was more obvious.It was noteworthy that the grain of rice under R1 monitored the low nitrate and nitrite content,but no nitrate and nitrite was discovered under R2 and R3.Therefore,reasonable rural sewage irrigation(R2)and medium water level(W2)were beneficial to improve nitrogen utilization efficiency,crop yield and crop quality promotion.
文摘In order to help the small-scale farmer, an automatic irrigation control system was proposed. This system will provide an irrigation system that will ease the burden of the citizen to take care of the plant. This system will run automatically by referring to the time set by the user. As the name itself is a water control system, this system will only start irrigating when the time set triggered the water control level for the plant to grow healthily. It will automatically stop when the timer is off (1 hour). The brain of the system is the PLC (Programmable Logic Controller). This is the place where all the activities are done. The irrigation will be provided by a pump that is also connected to the microcontroller. The pump will be activated until the timer has reached its time set. This system will continue running until the user presses the OFF button.