The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically ap...The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically applied in finding urban groundwater.These methods,however,are not effective due to their complicated topography and geological conditions.The application practice shows that the audio magnetotelluric(AMT)method has a large depth of exploration,high work effi ciency,and high lateral resolution.To investigate the distribution of groundwater resources,we deployed three audio-frequency magnetotelluric profiles in the city area.The impedance tensor information of AMT data is obtained using SSMT2000.AMT data dimension analysis reveals that the two-dimensional structural features of the observation area are obvious.The main structure of the observation area is about 45°northeast,as indicated by structural trend analysis.A shallow two-dimensional electrical profile of 1 km in Tongchuan City is obtained by two-dimensional nonlinear conjugate gradient inversion.Finally,combined with regional geological information,the geological structure characteristics reflected by the electrical profile were obtained along with the detailed characteristics of water-rich structures in the area.The infl uence of the structure on the groundwater distribution was analyzed,and the water-rich areas were identifi ed.This work contributes to the prospective development of Tongchuan City.展开更多
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i...Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.展开更多
This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysi...This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work.展开更多
基金This work is financially supported by the National 863 Program(No:2014AA06A602)National Natural Science Foundation of China(Nos.41404111,41904076 and 42074084).
文摘The development of Tongchuan City,Shaanxi Province,located in the northwestern region of China,is restricted by water resources.The direct current resistivity and induced polarization sounding methods are typically applied in finding urban groundwater.These methods,however,are not effective due to their complicated topography and geological conditions.The application practice shows that the audio magnetotelluric(AMT)method has a large depth of exploration,high work effi ciency,and high lateral resolution.To investigate the distribution of groundwater resources,we deployed three audio-frequency magnetotelluric profiles in the city area.The impedance tensor information of AMT data is obtained using SSMT2000.AMT data dimension analysis reveals that the two-dimensional structural features of the observation area are obvious.The main structure of the observation area is about 45°northeast,as indicated by structural trend analysis.A shallow two-dimensional electrical profile of 1 km in Tongchuan City is obtained by two-dimensional nonlinear conjugate gradient inversion.Finally,combined with regional geological information,the geological structure characteristics reflected by the electrical profile were obtained along with the detailed characteristics of water-rich structures in the area.The infl uence of the structure on the groundwater distribution was analyzed,and the water-rich areas were identifi ed.This work contributes to the prospective development of Tongchuan City.
基金Geological and Mineral Resources Survey of Metallogenic Belt in the Middle and Lower Reaches of Yangtze River,Grant/Award Number:1212011220540Jiangsu 1:50000 Dingsanwei,Kaishan Island,Yangqiao,Chenjiagang,New Huaihe Estuary,Xiangshui Estuary,Dayou,Xiaojie,DayuJian District,Grant/Award Numbers:Base[2012]02‐014‐009,Base[2013]01‐019‐002,Base[2014]01‐021‐003。
文摘Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.
基金supported by Investigation and Evaluation of Groundwater Resources and Environmental Problems in Hetao Plain (Geological Survey Program, Grant No.1212010913010)
文摘This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work.