The microstructure revolution and mechanical properties of as-extruded and peak-aged Mg−6Zn−1Mn−4Sn−0.5Ca(ZMT614−0.5Ca)alloy were studied by OM,SEM,TEM,hardness testing and tensile testing.The results showed that the ...The microstructure revolution and mechanical properties of as-extruded and peak-aged Mg−6Zn−1Mn−4Sn−0.5Ca(ZMT614−0.5Ca)alloy were studied by OM,SEM,TEM,hardness testing and tensile testing.The results showed that the as-cast ZMT614−0.5Ca alloy mainly consisted of α-Mg,Mg−Zn and CaMgSn phase.The hot extrusion process effectively refined the microstructure and led to a completely dynamic recrystallized microstructure.The average grain size of as-extruded alloy was^4.85μm.After solution treatment,remained CaMgSn with high melting point played a significant role in pinning effect and impeding the migration of grain boundary.After aging treatment,peak-aged ZMT614−0.5Ca alloy exhibited a good combination of strength and ductility,with yield strength,ultimate tensile strength and elongation being 338 MPa,383 MPa and 7.5%,respectively.The yield strength of the alloy increased significantly by around 36%compared with that in as-extruded condition,which should be attributed to the precipitation strengthening of β'phase.展开更多
The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing ag...The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes(SPMs).PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance.The major signatures of oxidative modification in the PMCAs are rapid inactivation,conformational changes,aggregation, internalization from the plasma membrane and proteolytic degradation.PMCA proteolysis appears to be mediated by both calpains and caspases.The predominance of one proteolytic pathway vs the other,the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult,its intensity and duration.Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca2+ handling but also has a myriad of downstream conse-quences on various aspects of cell function,indicating a broad role of these pumps.Age-and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease,and stroke.Therapeutic approaches that protect the PMCAs and stabilize[Ca2+]i homeostasis may be capable of slowing and/or preventing neuronal degeneration.The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.展开更多
基金Project(2016YFB0301101)supported by the National Key Research and Development Program of ChinaProjects(51571040,U1764253,51531002)supported by the National Natural Science Foundation of China。
文摘The microstructure revolution and mechanical properties of as-extruded and peak-aged Mg−6Zn−1Mn−4Sn−0.5Ca(ZMT614−0.5Ca)alloy were studied by OM,SEM,TEM,hardness testing and tensile testing.The results showed that the as-cast ZMT614−0.5Ca alloy mainly consisted of α-Mg,Mg−Zn and CaMgSn phase.The hot extrusion process effectively refined the microstructure and led to a completely dynamic recrystallized microstructure.The average grain size of as-extruded alloy was^4.85μm.After solution treatment,remained CaMgSn with high melting point played a significant role in pinning effect and impeding the migration of grain boundary.After aging treatment,peak-aged ZMT614−0.5Ca alloy exhibited a good combination of strength and ductility,with yield strength,ultimate tensile strength and elongation being 338 MPa,383 MPa and 7.5%,respectively.The yield strength of the alloy increased significantly by around 36%compared with that in as-extruded condition,which should be attributed to the precipitation strengthening of β'phase.
文摘The plasma membrane Ca2+-ATPase(PMCA)pumps play an important role in the maintenance of precise levels of intracellular Ca2+[Ca2+]i,essential to the functioning of neurons.In this article,we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes(SPMs).PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance.The major signatures of oxidative modification in the PMCAs are rapid inactivation,conformational changes,aggregation, internalization from the plasma membrane and proteolytic degradation.PMCA proteolysis appears to be mediated by both calpains and caspases.The predominance of one proteolytic pathway vs the other,the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult,its intensity and duration.Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca2+ handling but also has a myriad of downstream conse-quences on various aspects of cell function,indicating a broad role of these pumps.Age-and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease,and stroke.Therapeutic approaches that protect the PMCAs and stabilize[Ca2+]i homeostasis may be capable of slowing and/or preventing neuronal degeneration.The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.