Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discr...Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.展开更多
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant Nos06029431and020127)the Natural Science Foundation of the Education Bureau of Guangdong Province,China(Grant No Z02069)
文摘Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.