期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatial structural characteristics of the Deda ancient landslide in the eastern Tibetan Plateau:Insights from Audio-frequency Magnetotellurics and the Microtremor Survey Method
1
作者 Zhen-dong Qiu Chang-bao Guo +5 位作者 Yi-ying Zhang Zhi-hua Yang Rui-an Wu Yi-qiu Yan Wen-kai Chen Feng Jin 《China Geology》 CAS CSCD 2024年第2期188-202,共15页
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan... It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau. 展开更多
关键词 Ancient landslide Remote sensing audio-frequency magnetotellurics(AMT) Microtremor Survey Method(MSM) Geological drilling engineering Spatial structure Tibetan Plateau Geological hazard survey engineering
下载PDF
3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data 被引量:1
2
作者 RONG Zhihao LIU Yunhe 《Global Geology》 2022年第1期26-33,共8页
Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this differe... Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this difference will increase with the effective detection frequency of the method.As a result,when performing three-dimensional inversion on single type of EM data,it is not possible to effectively distinguish the subsurface geoelectric structure at the full scale.Therefore,it is necessary to perform joint inversion on different type of EM data.In this paper we combine the magnetotelluric method(MT)with the controlled-source audio-magnetotelluric method(CSAMT)to study the frequency-domain three-dimensional(3D)joint inversions,and we use the unstructured finite-element method to do the forward modeling for them,so that the numerical simulation accuracies of different electromagnetic methods can be satisfied.By combining the two sets of data,we can obtain the sensitivity of the electrical structure at different depths,and depict the full-scale subsurface geoelectric structures.In actual mineral exploration,the 3D joint inversion is more useful for identifying subsurface veins in the shallow part and blind mines in the deep part.It can delineate the morphological distribution of ore bodies more completely and provide reliable EM interpretations to guide the mining of minerals. 展开更多
关键词 3D joint inversion controlled-source audio-frequency magnetotelluric method magnetotelluric method onshore mineral resource exploration
下载PDF
Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method 被引量:2
3
作者 XIA Fan SONG Hong-wei +2 位作者 WANG Meng WANG Hong-liang CHEN Yu 《Journal of Groundwater Science and Engineering》 2019年第3期237-244,共8页
This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysi... This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work. 展开更多
关键词 Manzhouli HIGH-PRECISION magnetic measurement Middle-gradient method IP field PROSPECTING Controlled source audio-frequency magnetotellurics POLYMETALLIC ORES
下载PDF
Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou,Chengde,Hebei,North China 被引量:5
4
作者 Houyun Sun Xiaoming Sun +3 位作者 Xiaofeng Wei Xingkai Huang Guoqiu Ke Hao Wei 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期838-856,共19页
Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in No... Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in North China.The geochemical characteristics and formation mechanism of the Nuanquanzi geothermal system were elucidated by classical hydrogeochemical analysis,multi-isotopes approach(δD,δ^(18)O,δ^(13)C,δ^(87)Sr/^(86)Sr),14CAMSdating,and integrated geophysical prospecting of surface-soil radon gas measurement and CSAMT inversion.The results show that the Nuanquanzi geothermal field is a medium-low temperature convection-fault semi-enclosed geothermal system.The hydrochemical type of thermal water is primarily HCO_(3)-Na,and rich in soluble SiO_(2),F^(-)and Cl^(-).The geothermal water primarily originated from the recharging meteoric water with a maximum circulation depth of 2400-3200 m,but affected by the mixing of endogenous sedimentary water.The reservoir temperature calculated by Na-K and quartz geothermometer of the Nuanquanzi geothermal system was determined to be 73.39-92.87℃.The conduction-cooling and shallow cold-water mixing processes occurred during the parent geothermal fluid ascent to surface,and the proportion of cold-water mixing during circulation was approximately 88.3%to 92.2%.The high-anomaly radon zones matched well to the low apparentresistance areas and hiding faults,indicating that the Nuanquanzi geothermal field was dominated by a graben basin restricted by multiple faults. 展开更多
关键词 geothermal water HYDROGEOCHEMISTRY water isotopes soil radon measurement controlled source audio-frequency magnetotelluric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部