The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh...The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.展开更多
The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. T...The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. The need to ensure that they can be accomplished together demands a much richer ICT monitoring and control network than the current system. In this paper we particularly investigate the design and deployment of the ICT system in the urban environment, specifically in a university campus that is embedded in a city, thus it represents the Neighbourhood Area Network (NAN) level of the Smart Grid. In order to design an ICT infrastructure, we have introduced two related architectures: namely communications network architecture and a software architecture. Having access to the characteristics of a real NAN guides us to choose appropriate communication technologies and identify the actual requirements of the system. To implement these architectures at this level we need to gather and process information from environmental sensors (monitoring e.g. temperature, movement of people and vehicles) that can provide useful information about changes in the loading of the NAN, with information from instrumentation of the Power Grid itself. Energy constraints are one of the major limitations of the communication network in the Smart Grid, especially where wireless networking is proposed. Thus we analyse the most energy efficient method of collecting and sending data. The main contribution of this research is that we propose and implement an energy efficient ICT network and describe our software architecture at the NAN level, currently very underdeveloped. We also discuss our experimental results. To our knowledge, no such architectures have yet been implemented for collecting data which can provide the basis of Decision Support Tools (DSTs).展开更多
This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrog...This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.展开更多
The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the ...The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.展开更多
The fiber optic technology has matured to the point where Metropolitan Area Networks(MAN)can be built to operate at speeds from 150Mbps to more than 1Gbps.This paper in-troduces an experimental fiber optic MAN.The top...The fiber optic technology has matured to the point where Metropolitan Area Networks(MAN)can be built to operate at speeds from 150Mbps to more than 1Gbps.This paper in-troduces an experimental fiber optic MAN.The topology of this MAN is an open looped dualbus,and the data rate at each bus is 155.520 Mbps.We apply ATM technique and modified802.6 DQDB MAC protocol,using universal packet switching.The cell format is completelycompatible with B-ISDN cell.Through gateway the MAN can be interconnected with theBroadband Data Microwave Network,VSAT,Satellite Broadcast TV System,and Ether-net.There are up to 254 nodes connecting to the network,and the distance between two ad-jacent nodes covers more than 5 kilometers.We use 1.3μm SMF as the transmission medi-um.This paper emphasizes on the design and implementation of the Medium Access Control(MAC)Protocol.展开更多
A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensat...A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.展开更多
基金supported by Chongqing Big Data Engineering Laboratory for Children,Chongqing Electronics Engineering Technology Research Center for Interactive Learning,Project of Science and Technology Research Program of Chongqing Education Commission of China. (No.KJZD-K201801601).
文摘The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.
文摘The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. The need to ensure that they can be accomplished together demands a much richer ICT monitoring and control network than the current system. In this paper we particularly investigate the design and deployment of the ICT system in the urban environment, specifically in a university campus that is embedded in a city, thus it represents the Neighbourhood Area Network (NAN) level of the Smart Grid. In order to design an ICT infrastructure, we have introduced two related architectures: namely communications network architecture and a software architecture. Having access to the characteristics of a real NAN guides us to choose appropriate communication technologies and identify the actual requirements of the system. To implement these architectures at this level we need to gather and process information from environmental sensors (monitoring e.g. temperature, movement of people and vehicles) that can provide useful information about changes in the loading of the NAN, with information from instrumentation of the Power Grid itself. Energy constraints are one of the major limitations of the communication network in the Smart Grid, especially where wireless networking is proposed. Thus we analyse the most energy efficient method of collecting and sending data. The main contribution of this research is that we propose and implement an energy efficient ICT network and describe our software architecture at the NAN level, currently very underdeveloped. We also discuss our experimental results. To our knowledge, no such architectures have yet been implemented for collecting data which can provide the basis of Decision Support Tools (DSTs).
文摘This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.
文摘The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.
文摘The fiber optic technology has matured to the point where Metropolitan Area Networks(MAN)can be built to operate at speeds from 150Mbps to more than 1Gbps.This paper in-troduces an experimental fiber optic MAN.The topology of this MAN is an open looped dualbus,and the data rate at each bus is 155.520 Mbps.We apply ATM technique and modified802.6 DQDB MAC protocol,using universal packet switching.The cell format is completelycompatible with B-ISDN cell.Through gateway the MAN can be interconnected with theBroadband Data Microwave Network,VSAT,Satellite Broadcast TV System,and Ether-net.There are up to 254 nodes connecting to the network,and the distance between two ad-jacent nodes covers more than 5 kilometers.We use 1.3μm SMF as the transmission medi-um.This paper emphasizes on the design and implementation of the Medium Access Control(MAC)Protocol.
基金the National Natural Science Foundation of China (Nos. 51475414, 51475422, and 51521064) and the National Basic Research Program (973) of China (No. 2013CB035405)
文摘A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.