An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller...A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.展开更多
Pneumatic artificial muscles (PAMs) have the highest power to weight and power to volume ratios of any actuator. Therefore, they can be used not only in rehabilitation engineering, but also as actuators in robots, inc...Pneumatic artificial muscles (PAMs) have the highest power to weight and power to volume ratios of any actuator. Therefore, they can be used not only in rehabilitation engineering, but also as actuators in robots, including industrial and therapy robots. Because PAMs have highly nonlinear and time‐varying behavior associated with gas compression and the nonlinear elasticity of bladder containers, achieving excellent tracking performance using classical controllers is difficult. An adaptive self‐tuning fuzzy controller (ASTFC) including adaptive fuzzy sliding mode control (AFSMC) and functional approximation (FA) was developed in this study for overcoming the aforementioned problems. The FA technique was used to release the model‐based requirements and the update laws for the coefficients of the Fourier series function parameters were derived using a Lyapunov function to guarantee control system stability. The experimental results verified that the proposed approach can achieve excellent control performance despite external disturbance.展开更多
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform...Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
In this paper, the practicality and feasibility of Active Force Control (AFC) integrated with Fuzzy Logic(AFCAFL) applied to a two link planar arm actuated by a pair of Pneumatic Artificial Muscle (PAM) is inves...In this paper, the practicality and feasibility of Active Force Control (AFC) integrated with Fuzzy Logic(AFCAFL) applied to a two link planar arm actuated by a pair of Pneumatic Artificial Muscle (PAM) is investigated. The study emphasizes on the application and control of PAM actuators which may be considered as the new generation of actuators comprising fluidic muscle that has high-tension force, high power to weight ratio and high strength in spite of its drawbacks in the form of high nonlinearity behaviour, high hysteresis and time varying parameters. Fuzzy Logic (FL) is used as a technique to estimate the best value of the inertia matrix of robot arm essential for the AFC mechanism that is complemented with a conventional Propor- tional-Integral-Derivative (PID) control at the outermost loop. A simulation study was first performed followed by an experi- mental investigation for validation. The experimental study was based on the independent joint tracking control and coordinated motion control of the arm in Cartesian or task space. In the former, the PAM actuated arm is commanded to track the prescribed trajectories due to harmonic excitations at the joints for a given frequency, whereas for the latter, two sets of trajectories with different loadings were considered. A practical rig utilizing a Hardware-In-The-Loop Simulation (HILS) configuration was developed and a number of experiments were carried out. The results of the experiment and the simulation works were in good agreement, which verified the effectiveness and robustness of the proposed AFCAFL scheme actuated by PAM.展开更多
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto...This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.展开更多
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot...A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.展开更多
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim...Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.展开更多
提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分...提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。展开更多
An optimal control strategy of winner-take-all(WTA)model is proposed for target tracking and cooperative competition of multi-UAVs(unmanned aerial vehicles).In this model,firstly,based on the artificial potential fiel...An optimal control strategy of winner-take-all(WTA)model is proposed for target tracking and cooperative competition of multi-UAVs(unmanned aerial vehicles).In this model,firstly,based on the artificial potential field method,the artificial potential field function is improved and the fuzzy control decision is designed to realize the trajectory tracking of dynamic targets.Secondly,according to the finite-time convergence high-order differentiator,a double closed-loop UAV speed tracking the controller is designed to realize the speed control and tracking of the target tracking trajectory.Numerical simulation results show that the designed speed tracking controller has the advantages of fast tracking,high precision,strong stability and avoiding chattering.Finally,a cooperative competition scheme of multiple UAVs based on WTA is designed to find the minimum control energy from multiple UAVs and realize the optimal control strategy.Theoretical analysis and numerical simulation results show that the model has the fast convergence,high control accuracy,strong stability and good robustness.展开更多
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined...Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.展开更多
Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artifi...Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artificial intelligent fuzzy control algorithm is put forward in this paper. Through adjusting the on-off ratio of electric heating elements, the temperature in furnace is controlled accurately. This paper describes structure and qualities of the large-scale standing quench furnace briefly, introduces constitution of control system, and expounds principle and implementation of intelligent control algorithm. The applied results prove that the intelligent control system can completely satisfy the technological requirements. Namely, it can realize fast increasing temperature with a little overshoot, exact holding temperature, and well-distributed temperature in quench furnace. It has raised the output and quality of aluminum material, and brought the outstanding economic and social benefits.展开更多
An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The res...An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The results show that the intelligent control system can not only control the surface temperature of the bloom of the secondary cooling but also has a good ability of self-adaptation and self-learning.展开更多
Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of ...Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.展开更多
The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of flo...The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).展开更多
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
文摘A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
文摘Pneumatic artificial muscles (PAMs) have the highest power to weight and power to volume ratios of any actuator. Therefore, they can be used not only in rehabilitation engineering, but also as actuators in robots, including industrial and therapy robots. Because PAMs have highly nonlinear and time‐varying behavior associated with gas compression and the nonlinear elasticity of bladder containers, achieving excellent tracking performance using classical controllers is difficult. An adaptive self‐tuning fuzzy controller (ASTFC) including adaptive fuzzy sliding mode control (AFSMC) and functional approximation (FA) was developed in this study for overcoming the aforementioned problems. The FA technique was used to release the model‐based requirements and the update laws for the coefficients of the Fourier series function parameters were derived using a Lyapunov function to guarantee control system stability. The experimental results verified that the proposed approach can achieve excellent control performance despite external disturbance.
文摘Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
文摘In this paper, the practicality and feasibility of Active Force Control (AFC) integrated with Fuzzy Logic(AFCAFL) applied to a two link planar arm actuated by a pair of Pneumatic Artificial Muscle (PAM) is investigated. The study emphasizes on the application and control of PAM actuators which may be considered as the new generation of actuators comprising fluidic muscle that has high-tension force, high power to weight ratio and high strength in spite of its drawbacks in the form of high nonlinearity behaviour, high hysteresis and time varying parameters. Fuzzy Logic (FL) is used as a technique to estimate the best value of the inertia matrix of robot arm essential for the AFC mechanism that is complemented with a conventional Propor- tional-Integral-Derivative (PID) control at the outermost loop. A simulation study was first performed followed by an experi- mental investigation for validation. The experimental study was based on the independent joint tracking control and coordinated motion control of the arm in Cartesian or task space. In the former, the PAM actuated arm is commanded to track the prescribed trajectories due to harmonic excitations at the joints for a given frequency, whereas for the latter, two sets of trajectories with different loadings were considered. A practical rig utilizing a Hardware-In-The-Loop Simulation (HILS) configuration was developed and a number of experiments were carried out. The results of the experiment and the simulation works were in good agreement, which verified the effectiveness and robustness of the proposed AFCAFL scheme actuated by PAM.
文摘This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.
文摘A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.
文摘Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.
文摘提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。
基金This work was supported by the National Natural Science Foundation of China(71462018,71761018)the Science and Technology Program of Education Department of Jiangxi Province in China(GJJ171503).
文摘An optimal control strategy of winner-take-all(WTA)model is proposed for target tracking and cooperative competition of multi-UAVs(unmanned aerial vehicles).In this model,firstly,based on the artificial potential field method,the artificial potential field function is improved and the fuzzy control decision is designed to realize the trajectory tracking of dynamic targets.Secondly,according to the finite-time convergence high-order differentiator,a double closed-loop UAV speed tracking the controller is designed to realize the speed control and tracking of the target tracking trajectory.Numerical simulation results show that the designed speed tracking controller has the advantages of fast tracking,high precision,strong stability and avoiding chattering.Finally,a cooperative competition scheme of multiple UAVs based on WTA is designed to find the minimum control energy from multiple UAVs and realize the optimal control strategy.Theoretical analysis and numerical simulation results show that the model has the fast convergence,high control accuracy,strong stability and good robustness.
基金Supported by the National Natural Science Foundation of China(20776042) the National High Technology Research and Development Program of China(2007AA04Z164)+3 种基金 the Doctoral Fund of Ministry of Education of China(20090074110005) the Program for New Century Excellent Talents in University(NCET-09-0346) the"Shu Guang"Project(095G29) Shanghai Leading Academic Discipline Project(B504)
文摘Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.
基金Supported by The National Natural Science Foundation of China (No. 59835170).
文摘Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artificial intelligent fuzzy control algorithm is put forward in this paper. Through adjusting the on-off ratio of electric heating elements, the temperature in furnace is controlled accurately. This paper describes structure and qualities of the large-scale standing quench furnace briefly, introduces constitution of control system, and expounds principle and implementation of intelligent control algorithm. The applied results prove that the intelligent control system can completely satisfy the technological requirements. Namely, it can realize fast increasing temperature with a little overshoot, exact holding temperature, and well-distributed temperature in quench furnace. It has raised the output and quality of aluminum material, and brought the outstanding economic and social benefits.
文摘An intelligent control plan for the secondary cooling of continuous casting of slab was put forward. An off-line simulation of the system by using neural networks combined with fuzzy logic control is provided. The results show that the intelligent control system can not only control the surface temperature of the bloom of the secondary cooling but also has a good ability of self-adaptation and self-learning.
基金Funded by the Natural Science Foundation of Chongqing City(No.2005BB7250)
文摘Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.
文摘The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).