This paper investigates both the robust semi-global leaderless consensus problem and the robust semi-global containment control problem for a group of identical linear systems with imperfect actuators. The imperfect a...This paper investigates both the robust semi-global leaderless consensus problem and the robust semi-global containment control problem for a group of identical linear systems with imperfect actuators. The imperfect actuators are characterized by nonlinearities such as saturation and dead zone and there input output relationships are not precisely known. The dynamics of follower agents are also affected by the input additive disturbances. Low-and-high gain feedback consensus protocols are constructed to solve these problems. More specifically, it is shown that robust semi-global leaderless consensus can be achieved over a connected undirected graph and robust semi-global containment control can be achieved when each follower agent has access to the information of at least one leader agent. Numerical simulation illustrates the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61733018Shanghai Natural Science Foundation under Grant No.17ZR1445400+2 种基金China Postdoctoral Science Foundation under Grant Nos.2017M610233 and 2016T90373the Fundamental Research Funds for Central Universities under Grant No.222201714030the US Army Research Office under Grant No.W911NF-17-1-0535
文摘This paper investigates both the robust semi-global leaderless consensus problem and the robust semi-global containment control problem for a group of identical linear systems with imperfect actuators. The imperfect actuators are characterized by nonlinearities such as saturation and dead zone and there input output relationships are not precisely known. The dynamics of follower agents are also affected by the input additive disturbances. Low-and-high gain feedback consensus protocols are constructed to solve these problems. More specifically, it is shown that robust semi-global leaderless consensus can be achieved over a connected undirected graph and robust semi-global containment control can be achieved when each follower agent has access to the information of at least one leader agent. Numerical simulation illustrates the theoretical results.