In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includ...In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includes the air-fluid coupling and the nonlinearuncertainties, makes it difficult to have a consistent process performance. An integrated dispensingprocess model is first introduced and then its input-output regression relationship is used todesign a run to run control methodology for this process. The controller takes EWMA scheme and itsstability region is given. Experimental results verify the effectiveness of the proposed run to runcontrol method for dispensing process.展开更多
To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsula...To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.展开更多
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ...In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.展开更多
Impacts of greenhouse effects (2×CO_2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coup...Impacts of greenhouse effects (2×CO_2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R_(21)L_9 AOGCM).Two multi-year simulations,the control run with normal CO_2 concentration and the sensitivity run with doubled CO_2 concentration are conducted. As Part I of the publications,results of control run of the CSIRO,i.e.its simulation of present climate in China,are analyzed briefly.It shows that the model can basically reproduce the surface air temperature and precipitation pattern over China.Therefore,its outputs can be used to drive the regional model. Analysis of control run of RegCM shows that with a high resolution,the model improves the simulations of surface air temperature and precipitation in China as compared to the CSIRO model, especially for the precipitation.The spatial correlation coefficient between simulated and observed annual temperature increased from 0.83 in the CSIRO to 0.92 in the RegCM and for annual precipitation from 0.48 in the CSIRO to 0.65 in the RegCM.A similar improvement in the RegCM compared to the CSIRO was found in all simulated months.The main improvement for surface temperature is that RegCM can simulate the fine scale structure of temperature caused by topography.RegCM greatly improved the spatial distribution of precipitation by eliminating the virtual precipitation center in central China,which was simulated by many other GCMs.The precipitation simulated by RegCM in North and Northwest China is smaller than that by CSIRO, which makes it closer to the observation.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50390063, 50390064), Research Grant Council of HK SAR (CityU1086/01E)and City University of HK Applied R&D Project(No.9620002).
文摘In electronics packaging the time-pressure dispensing system is widely usedto squeeze the adhesive fluid in a syringe onto boards or substrates with the pressurized air.However, complexity of the process, which includes the air-fluid coupling and the nonlinearuncertainties, makes it difficult to have a consistent process performance. An integrated dispensingprocess model is first introduced and then its input-output regression relationship is used todesign a run to run control methodology for this process. The controller takes EWMA scheme and itsstability region is given. Experimental results verify the effectiveness of the proposed run to runcontrol method for dispensing process.
基金the startup research foundation of China Three Gorge University (No.0620070124)
文摘To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.
文摘In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.
基金the National Natural Science Foundation of China under Grant 40125014the National Natural Science Foundation of China under Grant 40231005+1 种基金Major Research Program for Global Change and Responsethe fund for IPCC of China Meteorological Administration
文摘Impacts of greenhouse effects (2×CO_2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R_(21)L_9 AOGCM).Two multi-year simulations,the control run with normal CO_2 concentration and the sensitivity run with doubled CO_2 concentration are conducted. As Part I of the publications,results of control run of the CSIRO,i.e.its simulation of present climate in China,are analyzed briefly.It shows that the model can basically reproduce the surface air temperature and precipitation pattern over China.Therefore,its outputs can be used to drive the regional model. Analysis of control run of RegCM shows that with a high resolution,the model improves the simulations of surface air temperature and precipitation in China as compared to the CSIRO model, especially for the precipitation.The spatial correlation coefficient between simulated and observed annual temperature increased from 0.83 in the CSIRO to 0.92 in the RegCM and for annual precipitation from 0.48 in the CSIRO to 0.65 in the RegCM.A similar improvement in the RegCM compared to the CSIRO was found in all simulated months.The main improvement for surface temperature is that RegCM can simulate the fine scale structure of temperature caused by topography.RegCM greatly improved the spatial distribution of precipitation by eliminating the virtual precipitation center in central China,which was simulated by many other GCMs.The precipitation simulated by RegCM in North and Northwest China is smaller than that by CSIRO, which makes it closer to the observation.