期刊文献+
共找到2,021篇文章
< 1 2 102 >
每页显示 20 50 100
Impacts of Total Energy Consumption Control and Energy Quota Allocation on China′s Regional Economy Based on A 30-region Computable General Equilibrium Analysis
1
作者 LI Na SHI Minjun +1 位作者 SHANG Zhiyuan YUAN Yongna 《Chinese Geographical Science》 SCIE CSCD 2015年第6期657-671,共15页
This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation... This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation plans with various weights of equity and efficiency, using a dynamic computable general equilibrium(CGE) model for 30 province-level administrative regions. The results show that the efficiency-first allocation plan costs the least but widens regional income gap, whereas the outcomes of equity-first allocation plan and intensity target-based allocation plan are similar and are both opposite to the efficiency-first allocation plan′ outcome. The plan featuring a balance between efficiency and equity is more feasible, which can bring regional economic losses evenly and prevent massive interregional migration of energy-related industries. Furthermore, the effects of possible induced energy technology improvements in different energy quota allocation plans were studied. Induced energy technology improvements can add more feasibility to all allocation plans under the total energy consumption control policy. In the long term, if the policy of the total energy consumption control continues and more market-based tools are implemented to allocate energy quotas, the positive consequences of induced energy technology improvements will become much more obvious. 展开更多
关键词 total energy consumption control energy quota allocation computable general equilibrium (CGE) model induced energytechnology improvements
下载PDF
Based on the water source heat pump system operation control and energy consumption optimization
2
作者 Guangxiang Wang Wei Ding 《Journal of World Architecture》 2020年第3期5-8,共4页
The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the... The contradiction between the increasing material demand and resource,is the country has faced problems,to better solve the material demand and the contradiction between the environment and resources,is applied to the development of new energy,new energy,not only can alleviate people and resources,environment and resources,the contradiction between people and the environment,also can promote the sustainable development of world economy,HVAC technology has emerged a new generation of energysaving technology,HVAC has the characteristics of low consumption,low pollution,is a development of technology,to be promoted for environmentfriendly,resource-conserving society has an important role in promoting.This paper focuses on the HVAC technology,water source heat pump system operation control and energy consumption optimization,for the relevant personnel reference. 展开更多
关键词 Heat pump system Operation control Optimization of energy consumption
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
3
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
Experimental and Modeling Study of the Regular Polygon Angle-spiral Liner in Ball Mills 被引量:4
4
作者 Yi SUN Man LIANG +2 位作者 Xiaohang JIN Pengpeng JI Jihong SHAN 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期363-372,共10页
Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performan... Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL. 展开更多
关键词 Load behavior Regular polygon angle-spiral liner (RPASL) Particle size distribution. Rate of production of fine product energy consumption. Collision energy intensity
下载PDF
Optimized model-based control of main mine ventilation air flows with minimized energy consumption 被引量:5
5
作者 S.Sjostrom E.Klintenas +1 位作者 P.Johansson J.Nyqvist 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期533-539,共7页
In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma... In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors. 展开更多
关键词 Mine ventilation Ventilation on demand Optimized model-based control Minimized energy consumption Advanced process control
下载PDF
Spatial and temporal variation of energy carbon emissions in Yantai from 2001 to 2011 被引量:1
6
作者 Qiuhong Su Qiuxian Wang +1 位作者 Dengjie Wang Xiaomei Yan 《Chinese Journal of Population,Resources and Environment》 2016年第3期182-188,共7页
In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation ... In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011.The results were as following:First of all,Yantai's carbon emissions grew by an average of 5.5%per year during the last 10 years,and there was a peak of 10.48 million carbon in the year of 2011.Second,compared with the gross domestic product(GDP) growth rate,the figures for energy carbon emissions growth rate were smaller;however the problem of carbon emissions were still more obvious.Furthermore,carbon emissions in Yantai increased rapidly before 2008;while after 2008,it increased more slowly and gradually become stable.Third,the energy consumption was different among regions in Yantai.For instance,the energy consumption in Longkou city was the largest,which occupied 50%of the total carbon emissions in Yantai;and the energy consumption in Chang Island was generally less than 1%of the Longkou consumption.Finally,there were relative close relationships among the spatial difference of carbon emissions,regional resources endowment,economic development,industrial structure,and energy efficiency. 展开更多
关键词 energy carbon emission spatial and temporal variation energy consumption carbon emission intensity
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
7
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Analysis on Carbon Emissions from Energy Consumption in Agriculture and Reduction Measures in Guangdong Province 被引量:1
8
作者 XIE Shu-juan1,2,3 1.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China 2.Graduate University of Chinese Academy of Sciences,Beijing 100049,China 3.Guangdong Academy of Social Sciences,Guangzhou 510610,China 《Meteorological and Environmental Research》 CAS 2011年第7期66-69,73,共5页
[Objective] The aim was to study CO2 emissions from energy consumption in agricultural production in Guangdong Province and put forward feasible reduction measures.[Method] Based on the data from China Energy Statisti... [Objective] The aim was to study CO2 emissions from energy consumption in agricultural production in Guangdong Province and put forward feasible reduction measures.[Method] Based on the data from China Energy Statistical Yearbook and Guangdong Statistical Yearbook,CO2 emissions from agricultural energy use in Guangdong Province from 2000 to 2009 was estimated by using the formula of carbon emissions recommended by Intergovernmental Panel on Climate Change (IPCC),and corresponding reduction measures were put forward.[Result] With the rapid increase of agricultural output and energy consumption,CO2 emissions from energy consumption in agricultural production in Guangdong Province showed increasing trend from 2000 to 2009,that is to say,increasing from 423.63×104 t C million tons in 2000 to 605.99×104 t C in 2009,with annual growth rate of 4.1%.Meanwhile,carbon emissions intensity during energy consumption in agriculture went down in recent ten years,in other words,decreasing from 0.424 t C/×104 yuan in 2000 to 0.301 t C/×104 yuan in 2009,and its annual decreasing rate was 3.7%.The variation of CO2 emissions from energy consumption in agriculture mainly resulted from the increase of agricultural output,improvement of energy utilization efficiency,high carbonization in agricultural energy consumption structure and so forth.Therefore,in order to reduce CO2 emissions from energy consumption in agriculture,it is necessary to vigorously develop rural renewable energy,develop and popularize advanced technology for energy utilization,advance the energy conservation of agricultural machines,establish and improve the macroeconomic control mechanism for carbon emissions from the energy consumption in agricultural production in the further.[Conclusion] The study could provide references for the establishment of policy about reducing carbon emissions from agricultural energy consumption in Guangdong Province. 展开更多
关键词 energy consumption in agriculture energy consumption structure CO2 emissions Carbon emissions intensity China
下载PDF
Low energy consumption depth control method of self-sustaining intelligent buoy 被引量:1
9
作者 ZHENG Di XU Jiayi +1 位作者 LI Xingfei LI Hongyu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期74-82,共9页
Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time g... Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time geostrophic oceanography(Argo)data is proposed.As known from the buoy kinematic model,the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth.Hence,we use historical Argo data to extract the fitting curves of density and temperature,and obtain the relationship between the hovering depth and the volume of the external oil sac.Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process,and the specific motion strategy of depth control process is obtained.Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method,the proposed method reduces energy consumption to 1/50 with the same accuracy.Finally,a hardware-in-the-loop simulation system was used to verify this method.When the error caused by fitting curves is not considered,the average error is 2.62 m,the energy consumption is 3.214×10^(4)J,and the error of energy consumption is only 0.65%.It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption. 展开更多
关键词 self-sustaining intelligent buoy low energy consumption depth control Argo data genetic algorithm hardware-in-the-loop simulation system
下载PDF
The Prediction of Carbon Emissions Demands in India under the Balance Economic Growth Path 被引量:1
10
作者 Shiyan Zhai Zheng Wang 《Smart Grid and Renewable Energy》 2012年第3期186-193,共8页
Facing the challenge of climate change, forecasts of energy demand and carbon emissions demand are a key requirement for India to ensure energy security and the balance economic growth. The authors calculate the optim... Facing the challenge of climate change, forecasts of energy demand and carbon emissions demand are a key requirement for India to ensure energy security and the balance economic growth. The authors calculate the optimal economic growth under the balance economic growth path from 2009 to 2050 in India based on the economy-carbon dynamic model. Combination of Intergovernmental Panel on Climate Change (IPCC) 2006 edition of the formula of carbon emissions, energy intensity model, and population model, it gets the carbon emissions demand caused by energy consumption for time span 1980-2008. Then, it estimates the energy consumption demand and carbon emissions demand under the balance economic growth path from 2009 to 2050. The results show that the cumulative amount of energy demand and carbon emissions demand in India for the time span 2009 to 2050, are 44.65 Gtoe and 36.16 Gt C, separately. The annual demand of energy consumption and carbon emissions for India show an inverted U curve from 2009 to 2050. The demand of energy consumption and carbon emissions will peak in 2045, and the peak values are 1290.74 Mtoe and 1045.98 Mt C. Furthermore, India’s per capita energy consumption demand and carbon emissions demand also appear maximum values, which are separately 0.81 toe and 0.65 t C. 展开更多
关键词 BALANCE Economic Growth energy intensity energy consumption Carbon Emissions
下载PDF
Trend of Final Energy Intensity Changes in Lao PDR
11
作者 Khamphone Nanthavong Sengratry Kythavone Kinnaleth Vongchanh 《Journal of Energy and Power Engineering》 2015年第3期265-268,共4页
While being developed, Lao society and economy have gradually shifted from agricultural-based to service-industrial oriented one. As a result, final energy consumption has rapidly changed. This paper studied a trend o... While being developed, Lao society and economy have gradually shifted from agricultural-based to service-industrial oriented one. As a result, final energy consumption has rapidly changed. This paper studied a trend of changes in final energy intensity by looking at sector-wide energy demand and shares in gross domestic products. It was found that intensity of total final energy consumption in Lao PDR (People's Democratic Republic) gradually decreased during the last decades. This was resulted of high stable economic growth and comparatively slow growth in energy demand. Furthermore, Lao economy still relays mainly on less-energy intensive economic sectors, such as services and traditional agriculture. Although energy intensities of the industry, transportation and services sectors continuously decreased, but have slowed down in recent years. Moreover, energy intensity of agricultural sector continues increasing. All these facts give a ground for thinking that in the future, when socio-economic development of the country will reach higher level, there will be more energy consuming activities, then energy demand will increase while economic growth will slow down, and therefore, energy intensity is to increase. Knowledge on trend of energy consumption changes would be useful for predicting energy demand and securing energy supply in the future. 展开更多
关键词 energy intensity final energy energy consumption.
下载PDF
Coordinate Control,Motion Optimization and Sea Experiment of a Fleet of Petrel-Ⅱ Gliders 被引量:5
12
作者 Dong-Yang Xue Zhi-Liang Wu +1 位作者 Yan-Hui Wang Shu-Xin Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期127-141,共15页
The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditiona... The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders. 展开更多
关键词 Underwater glider Petrel-Ⅱ Coordinate control Path planning Artificial potential fields(APFs) energy consumption
下载PDF
Heavy Industry Share Increase Is Causing Higher Energy Consumptioni 被引量:1
13
作者 齐志新 陈文颖 吴宗鑫 《China Economist》 2007年第4期37-46,共10页
The"11th Five-Year"plan sets the objective of reducing energy consumption per unit of GDP by 20% in five years.Readjusting industrial structure is one of the possible means to reach this goal.As for energy c... The"11th Five-Year"plan sets the objective of reducing energy consumption per unit of GDP by 20% in five years.Readjusting industrial structure is one of the possible means to reach this goal.As for energy consumption reduction through industrial readjustment,however,present research only explores the effects of industry structural change in the six sectors such as agriculture,industry,construction,transportation and commerce,yet without considering the ramifications of sub-sector two-digit code industry structure.In this paper,we have calculated the effects of structural change in light- heavy industries on energy consumption and energy intensity from 1993 to 2005 using the factor decomposition method.As a result,we found for each percentage point gain in favour of heavy industry in the light-heavy industry mix,China’s energy consumption increases by nearly 9 million metric tons of coal equivalent.However the overall effects of structural change in light-heavy industry are less than those of sub-sector intensity factors on industrial energy intensity and energy consumption per unit of GDP.The heavy industry share gain has over recent years exerted a significant impact on industrial energy intensity.For example,78% of the abnormal increase in industrial energy intensity in 2003 could be attributed to this factor.Finally,an analytical framework for energy intensity based on this study is presented. 展开更多
关键词 Light-heavy industry structure energy consumption energy intensity
下载PDF
Prospect of energy management system for large steel enterprise
14
作者 ZHANG Qin Baosteel Engineering & Technology Group Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期97-,共1页
The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utiliza... The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel. 展开更多
关键词 energy management system energy energy balance energy consumption real-time monitoring and controlling
下载PDF
Impact of COVID-19 on the energy consumption of commercial buildings:A case study in Singapore
15
作者 Senhong Cai Zhonghua Gou 《Energy and Built Environment》 2024年第3期364-373,共10页
Numerous studies have demonstrated that commercial activities have significantly reduced during COVID-19,while there are few studies disclosing the consequent impacts on the energy consumption of commercial build-ings... Numerous studies have demonstrated that commercial activities have significantly reduced during COVID-19,while there are few studies disclosing the consequent impacts on the energy consumption of commercial build-ings.This study explores the changes in energy consumption of different types of commercial buildings in Sin-gapore under the impact of the pandemic,using commercial building energy performance data from 2017 to 2020(n=540).The sampled buildings include 93 hotel buildings,303 office buildings,106 retail buildings,and 38 mixed developments.The analysis mainly used linear regression and paired sample t-test.The results showed that relative to 2019,the mean energy use intensity(EUI)of sampled commercial buildings decreased by 56.77 kWh/m^(2)in the pandemic year(2020),a plunge of 19.9%.The extent to which the EUI of each type of commercial building is affected by the pandemic is found as:mixed development>retail>office>hotel.The study also identi-fied the factors that significantly influenced the EUI of commercial buildings before and during the pandemic.The results of the study complement existing knowledge about the factors influencing energy consumption in com-mercial buildings by considering the impact of the pandemic and furthermore contribute to the improvement of energy management in commercial buildings by providing directions for building energy efficiency approaches. 展开更多
关键词 Commercial buildings energy consumption energy use intensity Impact of COVID-19 Influential factors
原文传递
Reducing Electrical Consumption in Stationary Long-Haul Trucks
16
作者 Kajal Sheth Dhvanil Patel Gautam Swami 《Open Journal of Energy Efficiency》 2024年第3期88-99,共12页
On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th... On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems. 展开更多
关键词 Long-Haul Trucks Electricity consumption Idling Reduction HVAC Systems Climate Control energy Efficiency
下载PDF
Survey and analysis of energy consumption in office buildings in Tianjin 被引量:2
17
作者 Junlong LI Huan ZHANG Shijun YOU Zhenhui XIE 《Frontiers in Energy》 SCIE CSCD 2013年第1期69-74,共6页
An energy audit of 24 office buildings was conducted in Tianjin, including basic information of buildings, building energy system and energy bills. The investigation results showed that the average intensity of energy... An energy audit of 24 office buildings was conducted in Tianjin, including basic information of buildings, building energy system and energy bills. The investigation results showed that the average intensity of energy consumption in office buildings in Tianjin accounts for 161.51 kW-h/(mZ.a). By breaking the energy consumption down into detailed items, it was found that the heating system consumed the highest amount of energy (46.6%), followed by equipment (35.9%), cooling system (11%) and lighting system (6.69%). The main factors for office building energy consumption were found and some feasible measures to save energy were proposed. 展开更多
关键词 office building energy consumption intensity energy consumption breakdown energy saving measures
原文传递
On the atmospheric movement and the imbalance of observed and calculated energy in the surface layer 被引量:5
18
作者 ZUO HongChao XIAO Xia +3 位作者 YANG QiDong DONG LongXiang CHEN JiWei WANG ShuJin 《Science China Earth Sciences》 SCIE EI CAS 2012年第9期1518-1532,共15页
Based on existing researches,here we theoretically summarized the characteristics of the atmospheric movement and turbulent transport of energy and substance in the surface layer as well as the ideal and the actual mo... Based on existing researches,here we theoretically summarized the characteristics of the atmospheric movement and turbulent transport of energy and substance in the surface layer as well as the ideal and the actual models for the turbulent transport.Then,using the data observed with eddy covariance at the semiarid climate and environment monitoring station(SACOL) in Lanzhou University from May to October during four consecutive years(September 2006-August 2010),we conducted a detailed analysis of the turbulent transport in the surface layer,through introducing the relative vertical turbulence intensity to characterize the turbulence strength,RIw=wn(wn+U),and also by adopting the method for controlling data quality at different levels.Our conclusions are:(1) The turbulent transport of energy and substance in the surface layer must obey the law of conservation of energy and the law of conservation of matter,the observed and calculated energy in the surface layer must be balanced,or closed in theory,but the actual observed and calculated energy just approximates the ideal in some degree and is difficult to achieve the energy balance.(2) The energy closure rate depends much on the atmospheric state in the surface layer,and the energy closure rate increases generally with the relative vertical turbulence intensity.(3) By the way of controlling data quality at different levels,it is found that the degree of data quality control can affect the closure rate,but it does not change the fact that the energy closure rate depends on the atmospheric state.(4) The calculation method of surface soil heat flux can affect energy closure rate,but does not change its dependence on the atmospheric state. 展开更多
关键词 surface layer energy balance state relative vertical turbulence intensity turbulence transport data quality control
原文传递
Train energy simulation with locomotive adhesion model 被引量:1
19
作者 Qing Wu Maksym Spiryagin Colin Cole 《Railway Engineering Science》 2020年第1期75-84,共10页
Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider ... Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation. 展开更多
关键词 energy consumption ADHESION MODEL TRACTION control Longitudinal TRAIN dynamics Parallel CO-SIMULATION
下载PDF
Presence Aware Power Saving Mode (PA-PSM) Enhancement for IoT Devices for Energy Conservation
20
作者 Abdul Saleem David Jazani Hong Qing Yu 《Open Journal of Energy Efficiency》 2019年第3期95-128,共34页
The Internet of Things has brought a vision to turn the digital object into smart devices by adding an intelligence system and thereafter connecting them to the internet world. These smart devices accumulate environme... The Internet of Things has brought a vision to turn the digital object into smart devices by adding an intelligence system and thereafter connecting them to the internet world. These smart devices accumulate environmental information with the help of sensors and act consequently without human intervention. The Internet of Thing is a rapidly growing industry with expected 50 - 200 billion smart devices to connect to the internet. Multi-billions of smart devices will produce a substantial amount of data to provide services to human society, although, it will lead to increase energy consumption at the highest level and drive to high energy bills. Moreover, the flood of IoT devices may also lead to energy scarcity. IoT is nowadays mainly focused on the IT industry and researchers believe the next wave of IoT may connect 1 trillion sensors by 2025. Even if these sensors would have 10 years of battery life, it will still require 275 million batteries to be replaced every day. Therefore, it is a necessity to reduce energy consumption in smart devices. “Presence Aware Power Saving Mode (PA-PSM) Enhancement for IoT Devices for Energy Conservation”, a proposed novel approach in this research paper by the help of a proposed algorithm in this research paper to reduce power consumption by individual devices within smart homes. In the proposed approach, a centralized automation controller keeps the less priority smart devices into deep sleep mode to save energy and experiments suggest the proposed system may help to reduce 25.81% of the energy consumed by smart devices within the smart home. 展开更多
关键词 Automation Controller IOT energy consumption ARDUINO UNO R3
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部