Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 colu...Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 columns. The structures were elucidated by spectral analysis. Results Thirteen compounds were isolated and their structures were identified as (-)-syringaresinol (1), syringaresinol-4-O-β-D-glucopyranoside (2), syringaresinol-4,4′-bis-O-β-D-glucopyranoside (3), (±)-catechin (4), catechin-3-O- β-D-glucopyranoside (5), catechin-5-O-β-D-glucopyranoside (6), 1,3-bis-(4-hydroxy-3,5-dimethoxyphenyl)-1,3-propanediol (7), (R)-(+)-chaulmoogric acid (8), friedelin (9), uracile (10), benzoic acid (11), vaniUic acid (12), and 4-hydroxybenzoic acid (13). Conclusion All the compounds described above were isolated from this genus for the first time.展开更多
基金Program for Changjiang Scholar and InnovativeTeam in Peking University (Grant number: 985-2-063-112).
文摘Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 columns. The structures were elucidated by spectral analysis. Results Thirteen compounds were isolated and their structures were identified as (-)-syringaresinol (1), syringaresinol-4-O-β-D-glucopyranoside (2), syringaresinol-4,4′-bis-O-β-D-glucopyranoside (3), (±)-catechin (4), catechin-3-O- β-D-glucopyranoside (5), catechin-5-O-β-D-glucopyranoside (6), 1,3-bis-(4-hydroxy-3,5-dimethoxyphenyl)-1,3-propanediol (7), (R)-(+)-chaulmoogric acid (8), friedelin (9), uracile (10), benzoic acid (11), vaniUic acid (12), and 4-hydroxybenzoic acid (13). Conclusion All the compounds described above were isolated from this genus for the first time.