期刊文献+
共找到3,161篇文章
< 1 2 159 >
每页显示 20 50 100
A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
1
作者 Li HU Zhiyuan LI Xiaona YANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期2019-2040,共22页
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-... In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm. 展开更多
关键词 fractional diffusion equation inverse source problem nonlocal observation observation UNIQUENESS Tikhonov regularization
下载PDF
Diffusion Equations of the Electric Charges and Magnetic Flux
2
作者 Salama Abdelhady Mohamed S. Abdelhady 《Journal of Electromagnetic Analysis and Applications》 2024年第5期69-83,共15页
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ... Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens. 展开更多
关键词 diffusion Coefficient diffusion equation Electric Charge Magnetic Flux Electromagnetic Waves Electric Field Magnetic Field
下载PDF
Crank-Nicolson Quasi-Compact Scheme for the Nonlinear Two-Sided Spatial Fractional Advection-Diffusion Equations
3
作者 Dechao Gao Zeshan Qiu +1 位作者 Lizan Wang Jianxin Li 《Journal of Applied Mathematics and Physics》 2024年第4期1089-1100,共12页
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper... The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective. 展开更多
关键词 Crank-Nicolson Quasi-Compact Scheme Fractional Advection-diffusion equations NONLINEAR Stability and Convergence
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
4
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous Galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One-and Two-Dimensions
5
作者 Yu Wang Min Cai 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1674-1696,共23页
In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The... In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis. 展开更多
关键词 Time-space fractional diffusion equation Caputo-Hadamard derivative Riesz derivative Fractional Laplacian Numerical analysis
下载PDF
THE FINITE DIFFERENCE STREAMLINE DIFFUSION METHODS FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS 被引量:6
6
作者 孙澈 沈慧 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1998年第1期72-85,共14页
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c... In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm. 展开更多
关键词 TIME-DEPENDENT convection-diffusion equations STREAMLINE diffusion methods Euler-FDSD SCHEME Crank-Nicolson-FDSD scheme.
下载PDF
Multidomain pseudospectral methods for nonlinear convection-diffusion equations 被引量:4
7
作者 纪园园 吴华 +1 位作者 马和平 郭本瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第10期1255-1268,共14页
Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method but the nonlinear term is collocated at the Legendre/C... Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method but the nonlinear term is collocated at the Legendre/Chebyshev-Gauss-Lobatto points inside each subinterval. Appropriate base functions are introduced so that the matrix of the system is sparse, and the method can be implemented efficiently and in parallel. The stability and the optimal rate of convergence of the methods are proved. Numerical results are given for both the single domain and the multidomain methods to make a comparison. 展开更多
关键词 equation multidomain Legendre/Chebyshev collocation convection-diffusion
下载PDF
CHARACTERISTIC GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS AND IMPLICIT ALGORITHM USING PRECISE INTEGRATION 被引量:3
8
作者 李锡夔 武文华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第4期371-382,共12页
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec... This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability. 展开更多
关键词 convection-diffusion equation characteristic Galerkin method finite element procedure precise integration implicit algorithm
下载PDF
Incremental Unknowns Method for Solving Three-Dimensional Convection-Diffusion Equations 被引量:1
9
作者 Lunji Song Yujiang Wu 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第1期14-27,共14页
We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three... We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three-dimensional convection-diffusion equations. The condition numbers of incremental unknowns matrices associated with the convection-diffusion equations and the number of iterations needed to attain an acceptable accuracy are estimated. Numerical results are presented with two-level approximations, which demonstrate that the incremental unknowns method when combined with some iter- ative methods is very effcient. 展开更多
关键词 逻辑积 扩散方程 离散化 迭代法
下载PDF
UPWIND SPLITTING SCHEME FOR CONVECTION-DIFFUSION EQUATIONS
10
作者 梁栋 芮洪兴 程爱杰 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第1期45-54,共10页
WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approx... WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ] 展开更多
关键词 CONVECTION diffusion equations UPWIND SPLITTING scheme maximum PRINCIPLE stability and CONVERGENCE .
下载PDF
A Nearly Analytic Discrete Method for One-dimensional Unsteady Convection-dominated Diffusion Equations
11
作者 KIM YON-CHOL YUN NAM CHAI DONG-HO 《Communications in Mathematical Research》 CSCD 2019年第3期193-207,共15页
In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the... In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems. 展开更多
关键词 convection-dominated diffusion equation NEARLY ANALYTIC DISCRETIZATION method analysis of the stability
下载PDF
Exponential B-Spline Solution of Convection-Diffusion Equations 被引量:1
12
作者 Reza Mohammadi 《Applied Mathematics》 2013年第6期933-944,共12页
We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration an... We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with relatively minimal computational effort. The results showed that use of the present approach in the simulation is very applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches for such physical applications. 展开更多
关键词 EXPONENTIAL B-SPLINE convection-diffusion equation COLLOCATION CRANK-NICOLSON FORMULATION
下载PDF
H^1 space-time discontinuous finite element method for convection-diffusion equations
13
作者 何斯日古楞 李宏 刘洋 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期371-384,共14页
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s... An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results. 展开更多
关键词 convection-diffusion equation H1 method space-time discontinuous finiteelement method error estimate
下载PDF
A Spectral Method for Convection-Diffusion Equations
14
作者 Peng Guo Qin Wang Zhengang Zhao 《Applied Mathematics》 2022年第12期968-987,共20页
In the practical problems such as nuclear waste pollution and seawater intrusion etc., many problems are reduced to solving the convection-diffusion equation, so the research of convection-diffusion equation is of gre... In the practical problems such as nuclear waste pollution and seawater intrusion etc., many problems are reduced to solving the convection-diffusion equation, so the research of convection-diffusion equation is of great value. In this work, a spectral method is presented for solving one and two dimensional convection-diffusion equation with source term. The finite difference method is also used to solve the convection diffusion equation. The numerical experiments show that the spectral method is more efficient than other methods for solving the convection-diffusion equation. 展开更多
关键词 convection-diffusion equation Central Finite Difference Method Upwind Difference Method CHEBYSHEV Spectral Method
下载PDF
Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations
15
作者 Xijian Wang 《American Journal of Computational Mathematics》 2015年第2期113-126,共14页
The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dom... The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods. 展开更多
关键词 Finite DIFFERENCE METHOD convection-diffusion equation DISCRETIZATION Matrix ITERATIVE METHOD CONVERGENCE Speed
下载PDF
Exponential Time Differencing Method for a Reaction-Diffusion System with Free Boundary
16
作者 Shuang Liu Xinfeng Liu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期354-371,共18页
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet... For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples. 展开更多
关键词 Reaction diffusion equations Free boundary Integrating factor method Level set method
下载PDF
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE SINGULARLY PERTURBED INITIAL BOUNDARY VALUE PROBLEMS OF THE REACTION DIFFUSION EQUATIONS IN A PART OF DOMAIN
17
作者 刘其林 莫嘉琪 《应用数学和力学》 EI CSCD 北大核心 2001年第10期1075-1080,共6页
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i... A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied. 展开更多
关键词 奇摄动 反应扩散方程 初始边值问题 算子理论 渐近性态
下载PDF
THE ZERO LIMIT OF THERMAL DIFFUSIVITY FOR THE 2D DENSITY-DEPENDENT BOUSSINESQ EQUATIONS
18
作者 叶霞 徐艳霞 王泽佳 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1800-1818,共19页
This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equation... This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equations converge to those of zero thermal diffusivity Boussinesq equations as the thermal diffusivity tends to zero,and the convergence rate is established.In addition,we prove that the boundary-layer thickness is of the valueδ(k)=k^(α)with anyα∈(0,1/4)for a small diffusivity coefficient k>0,and we also find a function to describe the properties of the boundary layer. 展开更多
关键词 density-dependent Boussinesq equation zero thermal diffusivity convergence rate boundary layer
下载PDF
ANALYSIS AND DISCRETIZATION FOR AN OPTIMAL CONTROL PROBLEM OF A VARIABLE-COEFFICIENT RIESZ-FRACTIONAL DIFFUSION EQUATION WITH POINTWISE CONTROL CONSTRAINTS
19
作者 周兆杰 王方圆 郑祥成 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期640-654,共15页
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex... We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions. 展开更多
关键词 Riesz-fractional diffusion equation variable coefficient optimal control finite element method Garding inequality optimal-order error estimate
下载PDF
A CLASS OF NONLINEAR SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS 被引量:10
20
作者 莫嘉琪 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期377-385,共9页
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for... A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions. 展开更多
关键词 NONLINEAR reaction diffusion equation singular perturbation
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部