This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio...This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of...We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
This paper presents an optimization approach—residual-based bootstrap averaging(RBBA)—for different types of forecast ensembles.Unlike traditional residual-mean-square-error-based ensemble forecast averaging approac...This paper presents an optimization approach—residual-based bootstrap averaging(RBBA)—for different types of forecast ensembles.Unlike traditional residual-mean-square-error-based ensemble forecast averaging approaches,the RBBA method attempts to find optimal forecast weights in an ensemble and allows for their combi-nation into the most effective additive forecast.In the RBBA method,all the different types of forecasts obtain the optimal weights for ensemble residuals that are statisti-cally optimal in terms of the fitness function of the residuals.Empirical studies have been conducted to demonstrate why and how the RBBA method works.The experi-mental results based on the real-world time series of contemporary stock exchanges show that the RBBA method can produce ensemble forecasts with good generalization ability.展开更多
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev...As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.展开更多
The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experime...The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.展开更多
Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analy...Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analysis, which does not allow us to distinguish if the origin of its variability is external noise or comes from chaotic sources. The recently introduced Mean to Variance Logarithmic (MVL) Diagram accounts for the spatial variability, being very sensitive to the spatial localization produced by infinitesimal perturbations of spatiotemporal chaotic systems. By using as a benchmark a simple model subject to noise, we show the distinct information given by Rank Histograms and MVL Diagrams. Hence, the main effects of the external noise can be visualized in a graphic. From the MVL diagram we clearly observe a reduction of the amplitude growth rate and of the spatial localization (chaos suppression), while from the Rank Histogram we observe changes in the reliability of the ensemble. We conclude that in a complex framework including spatiotemporal chaos and noise, both provide a more complete forecasting picture.展开更多
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ...PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and the...The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and their influence on the simulation results was analyzed.Simulated and observed tracks and intensities of TCs were compared and these two indicators were combined and weighted to score the sample.Samples with higher scores were retained and samples with lower scores were eliminated to improve the overall quality of the ensemble forecast.For each sample,the track score and intensity score were added as the final score of the sample with weight proportions of 10 to 0,9 to 1,8 to 2,7 to 3,6 to 4,5 to 5.These were named as“tr”,“91”,“82”,“73”,“64”,and“55”,respectively.The WRF model was used to simulate five tropical cyclones in the northwestern Pacific to test the ability of this scheme to improve the forecast track and intensity of these cyclones.The results show that the sample optimization effectively reduced the track and intensity error,“55”usually had better performance on the short-term intensity prediction,and“tr”had better performance in short-term track prediction.From the overall performance of the track and intensity simulation,“91”was the best and most stable among all sample optimization schemes.These results may provide some guidance for optimizing operational ensemble forecasting of TCs.展开更多
Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv...Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models.展开更多
This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the init...This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future. As such, DAI performs the ensemble forecast using the best analogues from a full size ensemble. As a pilot study, the Lorenz63 and Lorenz96 models were used to test DAI's effectiveness independently. Results showed that DAI can improve the forecast significantly. Especially in lower-dimensional systems, DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC). This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error. Meanwhile, a potential improvement of DAI is also proposed, and that is to find the optimal range of embedding time based on the error's growing speed.展开更多
A new method to quantify the predictability limit of ensemble forecasting is presented using the Kullback–Leibler(KL)divergence(also called the relative entropy), which provides a measure of the difference between th...A new method to quantify the predictability limit of ensemble forecasting is presented using the Kullback–Leibler(KL)divergence(also called the relative entropy), which provides a measure of the difference between the probability distributions of ensemble forecasts and local reference(true) states. The KL divergence is applicable to a non-normal distribution of ensemble forecasts, which is a substantial improvement over the previous method using the ensemble spread. An example from the three-variable Lorenz model illustrates the effectiveness of the KL divergence, which can effectively quantify the predictability limit of ensemble forecasting. On this basis, the KL divergence is used to investigate the dependence of the predictability limit of ensemble forecasting on the initial states and the magnitude of initial errors. The local predictability limit of ensemble forecasting varies considerably with the initial states, as well as with the magnitude of initial errors. Further research is needed to examine the real-world applications of the KL divergence in measuring the predictability of ensemble weather forecasts.展开更多
An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convectiv...An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convective forecasting.In this system,ensemble perturbations are updated by an ensemble of 3DEnVar and the ensemble forecasts are used to generate the flow-dependent background error covariance.The performance of the E3DA system was first evaluated against one experiment without radar DA and one radar DA experiment with 3DVar,using a severe storm case over southeastern China on 5 June 2009.Results indicated that E3DA improved the quantitative forecast skills of reflectivity and precipitation,as well as their spatial distributions in terms of both intensity and coverage over 3DVar.The root-mean-square error of radial velocity from 3DVar was reduced by E3DA,with stronger low-level wind closer to observation.It was also found that E3DA improved the wind,temperature and water vapor mixing ratio,with the lowest errors at the surface and upper levels.3DVar showed moderate improvements in comparison with forecasts without radar DA.A diagnosis of the analysis revealed that E3DA increased vertical velocity,temperature,and humidity corresponding to the added reflectivity,while 3DVar failed to produce these adjustments,because of the lack of reasonable cross-variable correlations.The performance of E3DA was further verified using two convective cases over southern and southeastern China,and the reflectivity forecast skill was also improved over 3DVar.展开更多
Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position per...Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % 70 % of all cases is improved in selective ensemble mean. When the ambient steering current is weak, more improvement can be obtained over the control forecast.展开更多
COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world.Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce t...COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world.Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases.In this study,we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases,deaths,and recoveries in Pakistan for the upcoming month until the end of July.For the decomposition of data,the Ensemble Empirical Mode Decomposition(EEMD)technique is applied.EEMD decomposes the data into small components,called Intrinsic Mode Functions(IMFs).For individual IMFs modelling,we use the Autoregressive Integrated Moving Average(ARIMA)model.The data used in this study is obtained from the official website of Pakistan that is publicly available and designated for COVID-19 outbreak with daily updates.Our analyses reveal that the number of recoveries,new cases,and deaths are increasing in Pakistan exponentially.Based on the selected EEMD-ARIMA model,the new confirmed cases are expected to rise from 213,470 to 311,454 by 31 July 2020,which is an increase of almost 1.46 times with a 95%prediction interval of 246,529 to 376,379.The 95%prediction interval for recovery is 162,414 to 224,579,with an increase of almost two times in total from 100802 to 193495 by 31 July 2020.On the other hand,the deaths are expected to increase from 4395 to 6751,which is almost 1.54 times,with a 95%prediction interval of 5617 to 7885.Thus,the COVID-19 forecasting results of Pakistan are alarming for the next month until 31 July 2020.They also confirm that the EEMD-ARIMA model is useful for the short-term forecasting of COVID-19,and that it is capable of keeping track of the real COVID-19 data in nearly all scenarios.The decomposition and ensemble strategy can be useful to help decision-makers in developing short-term strategies about the current number of disease occurrences until an appropriate vaccine is developed.展开更多
基金Key Project of the National Natural Science Foundation of China (42330611)National Natural Science Foundation of China (42105008)。
文摘This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
基金supported by the Natural Science Foundation of Nanjing Joint Center of Atmospheric Research(Grant Nos.NJCAR2016MS02 and NJCAR2016ZD04)the National Natural Science Foundation of China(Grant Nos.41205073 and41675007)the National Key Research and Development Program of China(Grant No.2017YFC1501800)
文摘We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
文摘This paper presents an optimization approach—residual-based bootstrap averaging(RBBA)—for different types of forecast ensembles.Unlike traditional residual-mean-square-error-based ensemble forecast averaging approaches,the RBBA method attempts to find optimal forecast weights in an ensemble and allows for their combi-nation into the most effective additive forecast.In the RBBA method,all the different types of forecasts obtain the optimal weights for ensemble residuals that are statisti-cally optimal in terms of the fitness function of the residuals.Empirical studies have been conducted to demonstrate why and how the RBBA method works.The experi-mental results based on the real-world time series of contemporary stock exchanges show that the RBBA method can produce ensemble forecasts with good generalization ability.
基金The Project Supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2020SP007the National Natural Science Foundation of China under contract Nos 42192562 and 62072249.
文摘As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.
文摘The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.
基金support from MEC,Spain,through Grant No.CGL2007-64387/CLIthe AECID,Spain,for support through projects A/013666/07 and A/018685/08
文摘Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analysis, which does not allow us to distinguish if the origin of its variability is external noise or comes from chaotic sources. The recently introduced Mean to Variance Logarithmic (MVL) Diagram accounts for the spatial variability, being very sensitive to the spatial localization produced by infinitesimal perturbations of spatiotemporal chaotic systems. By using as a benchmark a simple model subject to noise, we show the distinct information given by Rank Histograms and MVL Diagrams. Hence, the main effects of the external noise can be visualized in a graphic. From the MVL diagram we clearly observe a reduction of the amplitude growth rate and of the spatial localization (chaos suppression), while from the Rank Histogram we observe changes in the reliability of the ensemble. We conclude that in a complex framework including spatiotemporal chaos and noise, both provide a more complete forecasting picture.
基金Project(52072412)supported by the National Natural Science Foundation of ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFC1507602,2017YFC1501603)the National Natural Science Foundation of China(Grant No.41975136)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515011118)Sci-entific research project of Shanghai Science and Technology Com-mission(19dz1200101).
文摘The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and their influence on the simulation results was analyzed.Simulated and observed tracks and intensities of TCs were compared and these two indicators were combined and weighted to score the sample.Samples with higher scores were retained and samples with lower scores were eliminated to improve the overall quality of the ensemble forecast.For each sample,the track score and intensity score were added as the final score of the sample with weight proportions of 10 to 0,9 to 1,8 to 2,7 to 3,6 to 4,5 to 5.These were named as“tr”,“91”,“82”,“73”,“64”,and“55”,respectively.The WRF model was used to simulate five tropical cyclones in the northwestern Pacific to test the ability of this scheme to improve the forecast track and intensity of these cyclones.The results show that the sample optimization effectively reduced the track and intensity error,“55”usually had better performance on the short-term intensity prediction,and“tr”had better performance in short-term track prediction.From the overall performance of the track and intensity simulation,“91”was the best and most stable among all sample optimization schemes.These results may provide some guidance for optimizing operational ensemble forecasting of TCs.
基金This research was financially supported by the Ministry of Small and Mediumsized Enterprises(SMEs)and Startups(MSS),Korea,under the“Regional Specialized Industry Development Program(R&D,S2855401)”supervised by the Korea Institute for Advancement of Technology(KIAT).
文摘Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models.
文摘This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future. As such, DAI performs the ensemble forecast using the best analogues from a full size ensemble. As a pilot study, the Lorenz63 and Lorenz96 models were used to test DAI's effectiveness independently. Results showed that DAI can improve the forecast significantly. Especially in lower-dimensional systems, DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC). This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error. Meanwhile, a potential improvement of DAI is also proposed, and that is to find the optimal range of embedding time based on the error's growing speed.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1506402)the National Program on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI-03 and GASIIPOVAI-06)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘A new method to quantify the predictability limit of ensemble forecasting is presented using the Kullback–Leibler(KL)divergence(also called the relative entropy), which provides a measure of the difference between the probability distributions of ensemble forecasts and local reference(true) states. The KL divergence is applicable to a non-normal distribution of ensemble forecasts, which is a substantial improvement over the previous method using the ensemble spread. An example from the three-variable Lorenz model illustrates the effectiveness of the KL divergence, which can effectively quantify the predictability limit of ensemble forecasting. On this basis, the KL divergence is used to investigate the dependence of the predictability limit of ensemble forecasting on the initial states and the magnitude of initial errors. The local predictability limit of ensemble forecasting varies considerably with the initial states, as well as with the magnitude of initial errors. Further research is needed to examine the real-world applications of the KL divergence in measuring the predictability of ensemble weather forecasts.
基金This research was supported by the Startup Foundation for Introducing Talent of Shenyang Agricultural University(Grant No.8804-880418054)the National Agricultural Research System of China(Grant No.CARS-13)the National Key Research and Development Program of China(Grant No.2017YFC1502102).
文摘An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convective forecasting.In this system,ensemble perturbations are updated by an ensemble of 3DEnVar and the ensemble forecasts are used to generate the flow-dependent background error covariance.The performance of the E3DA system was first evaluated against one experiment without radar DA and one radar DA experiment with 3DVar,using a severe storm case over southeastern China on 5 June 2009.Results indicated that E3DA improved the quantitative forecast skills of reflectivity and precipitation,as well as their spatial distributions in terms of both intensity and coverage over 3DVar.The root-mean-square error of radial velocity from 3DVar was reduced by E3DA,with stronger low-level wind closer to observation.It was also found that E3DA improved the wind,temperature and water vapor mixing ratio,with the lowest errors at the surface and upper levels.3DVar showed moderate improvements in comparison with forecasts without radar DA.A diagnosis of the analysis revealed that E3DA increased vertical velocity,temperature,and humidity corresponding to the added reflectivity,while 3DVar failed to produce these adjustments,because of the lack of reasonable cross-variable correlations.The performance of E3DA was further verified using two convective cases over southern and southeastern China,and the reflectivity forecast skill was also improved over 3DVar.
文摘Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % 70 % of all cases is improved in selective ensemble mean. When the ambient steering current is weak, more improvement can be obtained over the control forecast.
文摘COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world.Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases.In this study,we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases,deaths,and recoveries in Pakistan for the upcoming month until the end of July.For the decomposition of data,the Ensemble Empirical Mode Decomposition(EEMD)technique is applied.EEMD decomposes the data into small components,called Intrinsic Mode Functions(IMFs).For individual IMFs modelling,we use the Autoregressive Integrated Moving Average(ARIMA)model.The data used in this study is obtained from the official website of Pakistan that is publicly available and designated for COVID-19 outbreak with daily updates.Our analyses reveal that the number of recoveries,new cases,and deaths are increasing in Pakistan exponentially.Based on the selected EEMD-ARIMA model,the new confirmed cases are expected to rise from 213,470 to 311,454 by 31 July 2020,which is an increase of almost 1.46 times with a 95%prediction interval of 246,529 to 376,379.The 95%prediction interval for recovery is 162,414 to 224,579,with an increase of almost two times in total from 100802 to 193495 by 31 July 2020.On the other hand,the deaths are expected to increase from 4395 to 6751,which is almost 1.54 times,with a 95%prediction interval of 5617 to 7885.Thus,the COVID-19 forecasting results of Pakistan are alarming for the next month until 31 July 2020.They also confirm that the EEMD-ARIMA model is useful for the short-term forecasting of COVID-19,and that it is capable of keeping track of the real COVID-19 data in nearly all scenarios.The decomposition and ensemble strategy can be useful to help decision-makers in developing short-term strategies about the current number of disease occurrences until an appropriate vaccine is developed.