Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality ...Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.展开更多
In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and suffi...In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.展开更多
Typically, active control systems either have a priori complete information about the boundary-value problem and damped waves before switching on, or get it during the measurement process or accumulate and update info...Typically, active control systems either have a priori complete information about the boundary-value problem and damped waves before switching on, or get it during the measurement process or accumulate and update information online (identification process in adaptive systems). In this case, the boundary problem is completely imprinted in the information arrays of the control system. However, very often complete information about a boundary-value problem is not available in principle or this info is changing in time faster than the process of its accumulation. The article considers examples of boundary control algorithms based almost without any information. The algorithms presented in the article cannot be obtained within the framework of the harmonic representation of the problem by complex amplitudes. And these algorithms carry out fast control in microstructured boundary problems. It is shown that in some cases it is possible to find simple solutions if we remove restrictions: 1) on the spatio-temporal resolution of controlling elements of a boundary-value problem;2) on the high-frequency radiation of the controlled boundary.展开更多
In this paper a uniqueness theorem for a skewperiodic boundary value problem is obtained. By using the optimal control method, we derive the best estimate for the integration mean ensuring that the results hold.
This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function...This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.展开更多
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi...This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.展开更多
A control strategy combining feedforward control and feedback control is presented for the optimal deployment of a spacecraft solar array system with the initial state uncertainty. A dynamic equation of the spacecraft...A control strategy combining feedforward control and feedback control is presented for the optimal deployment of a spacecraft solar array system with the initial state uncertainty. A dynamic equation of the spacecraft solar array system is established under the assumption that the initial linear momentum and angular momentum of the system are zero. In the design of feedforward control, the dissipation energy of each revolute joint is selected as the performance index of the system. A Legendre pseudospectral method(LPM) is used to transform the optimal control problem into a nonlinear programming problem. Then, a sequential quadratic programming algorithm is used to solve the nonlinear programming problem and offline generate the optimal reference trajectory of the system. In the design of feedback control, the dynamic equation is linearized along the reference trajectory in the presence of initial state errors. A trajectory tracking problem is converted to a two-point boundary value problem based on Pontryagin’s minimum principle. The LPM is used to discretize the two-point boundary value problem and transform it into a set of linear algebraic equations which can be easily calculated. Then, the closed-loop state feedback control law is designed based on the resulting optimal feedback control and achieves good performance in real time. Numerical simulations demonstrate the feasibility and effectiveness of the proposed control strategy.展开更多
We propose a characteristic finite element evolutionary type convection-diffusion optimal control discretization of problems. Non- divergence-free velocity fields and bilateral inequality control constraints are handl...We propose a characteristic finite element evolutionary type convection-diffusion optimal control discretization of problems. Non- divergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.展开更多
This paper considers a model for the growth of a solid tumor with a single anticancer agent application.The model is a free boundary problem of a nonlinear reaction-diffusion-advection equation,where the free boundary...This paper considers a model for the growth of a solid tumor with a single anticancer agent application.The model is a free boundary problem of a nonlinear reaction-diffusion-advection equation,where the free boundary is the surface of the tumor.Since multicellular spheroids are routinely used as in vitro(i.e.,outside live organisms)models of cancer growth and they can be observed and controlled in the laboratory,the following inverse problem is studied:given observed dynamics of tumor growth,a certain parameter is determined.The Lipschitz stability of solutions to the above-mentioned inverse problem is established,and this inverse problem is solved by control theory.Numerical methods for solving the inverse problem are also given.展开更多
In this paper, Bezier surface form is used to find the approximate solution of delay differential equations (DDE’s). By using a recurrence relation and the traditional least square minimization method, the best contr...In this paper, Bezier surface form is used to find the approximate solution of delay differential equations (DDE’s). By using a recurrence relation and the traditional least square minimization method, the best control points of residual function can be found where those control points determine the approximate solution of DDE. Some examples are given to show efficiency of the proposed method.展开更多
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori er...In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.展开更多
In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the ...In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.展开更多
By employing the Schauder fixed-point theorem, we establish new suffi- cient conditions for the controllability of impulsive functional boundary value problems.
文摘Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.
文摘In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.
文摘Typically, active control systems either have a priori complete information about the boundary-value problem and damped waves before switching on, or get it during the measurement process or accumulate and update information online (identification process in adaptive systems). In this case, the boundary problem is completely imprinted in the information arrays of the control system. However, very often complete information about a boundary-value problem is not available in principle or this info is changing in time faster than the process of its accumulation. The article considers examples of boundary control algorithms based almost without any information. The algorithms presented in the article cannot be obtained within the framework of the harmonic representation of the problem by complex amplitudes. And these algorithms carry out fast control in microstructured boundary problems. It is shown that in some cases it is possible to find simple solutions if we remove restrictions: 1) on the spatio-temporal resolution of controlling elements of a boundary-value problem;2) on the high-frequency radiation of the controlled boundary.
文摘In this paper a uniqueness theorem for a skewperiodic boundary value problem is obtained. By using the optimal control method, we derive the best estimate for the integration mean ensuring that the results hold.
文摘This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.
文摘This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.
基金supported by the National Natural Science Foundation of China(Nos.11732005 and11472058)
文摘A control strategy combining feedforward control and feedback control is presented for the optimal deployment of a spacecraft solar array system with the initial state uncertainty. A dynamic equation of the spacecraft solar array system is established under the assumption that the initial linear momentum and angular momentum of the system are zero. In the design of feedforward control, the dissipation energy of each revolute joint is selected as the performance index of the system. A Legendre pseudospectral method(LPM) is used to transform the optimal control problem into a nonlinear programming problem. Then, a sequential quadratic programming algorithm is used to solve the nonlinear programming problem and offline generate the optimal reference trajectory of the system. In the design of feedback control, the dynamic equation is linearized along the reference trajectory in the presence of initial state errors. A trajectory tracking problem is converted to a two-point boundary value problem based on Pontryagin’s minimum principle. The LPM is used to discretize the two-point boundary value problem and transform it into a set of linear algebraic equations which can be easily calculated. Then, the closed-loop state feedback control law is designed based on the resulting optimal feedback control and achieves good performance in real time. Numerical simulations demonstrate the feasibility and effectiveness of the proposed control strategy.
基金The authors would like to thank tile anonymous referees for their valuable comments and suggestions on an earlier version of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11201485, 11171190, 11301311), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2013NJ001), and tile Fundamental Research Funds for the Central Universities (Nos. 14CX02217A, 14CX02144A).
文摘We propose a characteristic finite element evolutionary type convection-diffusion optimal control discretization of problems. Non- divergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.
基金Natural Science Foundation of Shanghai,China(No.09ZR1401200)
文摘This paper considers a model for the growth of a solid tumor with a single anticancer agent application.The model is a free boundary problem of a nonlinear reaction-diffusion-advection equation,where the free boundary is the surface of the tumor.Since multicellular spheroids are routinely used as in vitro(i.e.,outside live organisms)models of cancer growth and they can be observed and controlled in the laboratory,the following inverse problem is studied:given observed dynamics of tumor growth,a certain parameter is determined.The Lipschitz stability of solutions to the above-mentioned inverse problem is established,and this inverse problem is solved by control theory.Numerical methods for solving the inverse problem are also given.
文摘In this paper, Bezier surface form is used to find the approximate solution of delay differential equations (DDE’s). By using a recurrence relation and the traditional least square minimization method, the best control points of residual function can be found where those control points determine the approximate solution of DDE. Some examples are given to show efficiency of the proposed method.
基金National Nature Science Foundation under Grants 60474027 and 10771211the National Basic Research Program under the Grant 2005CB321701
文摘In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.
基金The first author was supported by the Guangxi Natural Science Foundation of China(Grant No.2021GXNSFFA196004)National Natural Science Foundation of China(Grant No.12001478)+4 种基金Horizon 2020 of the European Union(Grant No.823731 CONMECH)National Science Center of Poland(Grant No.2017/25/N/ST1/00611)The second author was supported by National Science Foundation of USA(Grant No.DMS 1720067)The third author was supported by the National Science Center of Poland(Grant No.2021/41/B/ST1/01636)the Ministry of Science and Higher Education of Poland(Grant Nos.4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019)。
文摘In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.
基金supported by Natural Science Foundation of Shandong Province(ZR2014AM006)
文摘By employing the Schauder fixed-point theorem, we establish new suffi- cient conditions for the controllability of impulsive functional boundary value problems.