In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At ea...We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At each time step,a convection problem and a diffusion problem are solved successively.A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme;while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers.The scheme can be extended for solving the Navier-Stokes equations,where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step,while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process.Numerical simulations are presented to demonstrate the stability,convergence and performance of the single-step and multistep variants of the new scheme.展开更多
In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the...In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for ...The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems are studied.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different ...Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors...This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter e. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results.展开更多
The transport behavior of free boundary value problems for a class ofgeneralized diffusion equations was studied. Suitable similarity transformations were used toconvert the problems into a class of singular nonlinear...The transport behavior of free boundary value problems for a class ofgeneralized diffusion equations was studied. Suitable similarity transformations were used toconvert the problems into a class of singular nonlinear two-point boundary value problems andsimilarity solutions were numerical presented for different representations of heat conductionfunction, convection function, heat flux function, and power law parameters by utilizing theshooting technique. The results revealed the flux transfer mechanism and the character as well asthe effects of parameters on the solutions.展开更多
The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal ...The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal asymptotic solution was constructed. And the existence and its asymptotic behavior of solution for the problem were studied by using the method of the upper and lower solution.展开更多
Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to acc...Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to accelerate the convergence of the iterative methods used to solve this type of problem.The asymptotic convergence factor of the multigrid was determined empirically(computer aided)and also by employing local Fourier analysis(LFA).The mathematical model studied was the 2D anisotropic diffusion equation,in whichε>0 was the coefficient of a nisotropy.The equation was discretized by the Finite Difference Method(FDM)and Central Differencing Scheme(CDS).Correction Scheme(CS),pointwise Gauss-Seidel smoothers(Lexicographic and Red-Black ordering),and line Gauss-Seidel smoothers(Lexicographic and Zebra ordering)in x and y directions were used for building the multigrid.The best asymptotic convergence factor was obtained by the Gauss-Seidel method in the direction x for 0<ε<<1 and in the direction y forε>>1.In this sense,an xy-zebra-GS smoother was proposed,which proved to be efficient and robust for the different anisotropy coefficients.Moreover,the convergence factors calculated empirically and by LFA are in agreement.展开更多
In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and init...In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
A streamline upwind finite element method using 6-node triangular element is presented. The method is applied to the convection term of the governing transport equation directly along local streamlines. Several convec...A streamline upwind finite element method using 6-node triangular element is presented. The method is applied to the convection term of the governing transport equation directly along local streamlines. Several convective-diffusion examples are used to evaluate efficiency of the method. Results show that the method is monotonic and does not produce any oscillation. In addition, an adaptive meshing technique is combined with the method to further increase accuracy of the solution, and at the same time, to minimize computational time and computer memory requirement.展开更多
The existence of a global minimizer for a variational problem arising in registration of diffusion tensor images is proved, which ensures that there is a regular spatial transformation for the registration of diffusio...The existence of a global minimizer for a variational problem arising in registration of diffusion tensor images is proved, which ensures that there is a regular spatial transformation for the registration of diffusion tensor images.展开更多
In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Othe...In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.展开更多
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金The work of F.Shi was partially supported by NSFC(Projects 41104039 and 11401563)Guangdong Natural Science Foundation(Project S201204007760)+2 种基金Tianyuan Fund for Mathematics of the NSFC(Project 11226314)the Knowledge Innovation Program of the Chinese Academy of Sciences(China)under KJCX2-EW-L01,and the international cooperation project of Guangdong province(China)under 2011B050400037J.Zou was substantially supported by Hong Kong RGC grants(Projects 404611 and 405513)。
文摘We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At each time step,a convection problem and a diffusion problem are solved successively.A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme;while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers.The scheme can be extended for solving the Navier-Stokes equations,where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step,while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process.Numerical simulations are presented to demonstrate the stability,convergence and performance of the single-step and multistep variants of the new scheme.
文摘In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems are studied.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.
基金supported by a grant from the National Natural Science Foundation of China (NSFC) No. 81070826/30872886/30400497Sponsored by Shanghai Rising-Star Program No. 09QA1403700+1 种基金funded by Shanghai Leading Academic Discipline Project (Project Number: S30206)the Science and Technology Commission of Shanghai (08DZ2271100)
文摘Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金supported by the National Natural Science Foundation of China(Nos.11271340 and11671369)
文摘This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter e. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results.
基金This work was financially supported by the Cross-Century Talents Projects of Educational Ministry of China and the 973 Key Item (No. G1998061510).]
文摘The transport behavior of free boundary value problems for a class ofgeneralized diffusion equations was studied. Suitable similarity transformations were used toconvert the problems into a class of singular nonlinear two-point boundary value problems andsimilarity solutions were numerical presented for different representations of heat conductionfunction, convection function, heat flux function, and power law parameters by utilizing theshooting technique. The results revealed the flux transfer mechanism and the character as well asthe effects of parameters on the solutions.
文摘The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal asymptotic solution was constructed. And the existence and its asymptotic behavior of solution for the problem were studied by using the method of the upper and lower solution.
文摘Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to accelerate the convergence of the iterative methods used to solve this type of problem.The asymptotic convergence factor of the multigrid was determined empirically(computer aided)and also by employing local Fourier analysis(LFA).The mathematical model studied was the 2D anisotropic diffusion equation,in whichε>0 was the coefficient of a nisotropy.The equation was discretized by the Finite Difference Method(FDM)and Central Differencing Scheme(CDS).Correction Scheme(CS),pointwise Gauss-Seidel smoothers(Lexicographic and Red-Black ordering),and line Gauss-Seidel smoothers(Lexicographic and Zebra ordering)in x and y directions were used for building the multigrid.The best asymptotic convergence factor was obtained by the Gauss-Seidel method in the direction x for 0<ε<<1 and in the direction y forε>>1.In this sense,an xy-zebra-GS smoother was proposed,which proved to be efficient and robust for the different anisotropy coefficients.Moreover,the convergence factors calculated empirically and by LFA are in agreement.
文摘In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
文摘A streamline upwind finite element method using 6-node triangular element is presented. The method is applied to the convection term of the governing transport equation directly along local streamlines. Several convective-diffusion examples are used to evaluate efficiency of the method. Results show that the method is monotonic and does not produce any oscillation. In addition, an adaptive meshing technique is combined with the method to further increase accuracy of the solution, and at the same time, to minimize computational time and computer memory requirement.
基金supported by NSFC under grant No.11471331partially supported by National Center for Mathematics and Interdisciplinary Sciences
文摘The existence of a global minimizer for a variational problem arising in registration of diffusion tensor images is proved, which ensures that there is a regular spatial transformation for the registration of diffusion tensor images.
文摘In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.